Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Insects ; 14(2)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36835682

ABSTRACT

Naupactus cervinus is a parthenogenetic weevil native to South America that is currently distributed worldwide. This flightless species is polyphagous and capable of modifying gene expression regimes for responding to stressful situations. Naupactus cervinus was first reported in the continental United States in 1879 and has rapidly colonized most of the world since. Previous studies suggested that an invader genotype successfully established even in areas of unsuitable environmental conditions. In the present work, we analyze mitochondrial and nuclear sequences from 71 individuals collected in 13 localities across three states in the southern US, in order to describe the genetic diversity in this area of introduction that has not yet been previously studied. Our results suggest that 97% of the samples carry the most prevalent invader genotype already reported, while the rest shows a close mitochondrial derivative. This would support the hypothesis of a general purpose genotype, with parthenogenesis and its associated lack of recombination maintaining the linkage of genetic variants capable of coping with adverse conditions and enlarging its geographical range. However, demographic advantages related to parthenogenetic reproduction as the main driver of geographic expansion (such as the foundation of a population with a single virgin female) cannot be ruled out. Given the historical introduction records and the prevalence of the invader genotype, it is possible that the continental US may act as a secondary source of introductions to other areas. We propose that both the parthenogenesis and scarce genetic variation in places of introduction may, in fact, be an asset that allows N. cervinus to thrive across a range of environmental conditions.

2.
Mol Ecol ; 31(4): 1196-1215, 2022 02.
Article in English | MEDLINE | ID: mdl-34862997

ABSTRACT

Chromosomal inversions are known to play roles in adaptation and differentiation in many species. They involve clusters of correlated genes (i.e., loci in linkage disequilibrium, LD) possibly associated with environmental variables. The grasshopper "species complex" Trimerotropis pallidipennis comprises several genetic lineages distributed from North to South America in arid and semi-arid high-altitude environments. The southernmost lineage, Trimerotropis sp., segregates for four to seven putative inversions that display clinal variation, possibly through adaptation to temperate environments. We analysed chromosomal, mitochondrial and genome-wide single nucleotide polymorphism data in 19 Trimerotropis sp. populations mainly distributed along two altitudinal gradients (MS and Ju). Populations across Argentina comprise two main chromosomally and genetically differentiated lineages: one distributed across the southernmost border of the "Andes Centrales," adding evidence for a differentiation hotspot in this area; and the other widely distributed in Argentina. Within the latter, network analytical approaches to LD found three clusters of correlated loci (LD-clusters), with inversion karyotypes explaining >79% of the genetic variation. Outlier loci associated with environmental variables mapped to two of these LD-clusters. Furthermore, despite the complex geographical history indicated by population genetic analyses, the clines in inversion karyotypes have remained stable for more than 20 generations, implicating their role in adaptation and differentiation within this lineage. We hypothesize that these clines could be the consequence of a coupling between extrinsic postzygotic barriers and spatially varying selection along environmental gradients resulting in a hybrid zone. These results provide a framework for future investigations about candidate genes implicated in rapid adaptation to new environments.


Subject(s)
Chromosome Inversion , Grasshoppers , Animals , Chromosome Inversion/genetics , Geography , Grasshoppers/genetics , Karyotype , Linkage Disequilibrium
3.
PLoS One ; 13(5): e0195551, 2018.
Article in English | MEDLINE | ID: mdl-29718921

ABSTRACT

Naupactus cervinus (Boheman) (Curculionidae, Naupactini) is a parthenogenetic weevil native to the Paranaense Forest which displays high levels of genetic variation. Two divergent clades were identified, one ranging in forest areas (Forest clade), and the other in open vegetation areas (Grassland clade). Both of them have individuals with high levels of heterozygosity in ribosomal sequences. Investigation of intraindividual variation in ITS1 sequences through cloning and posterior sequencing suggested that mating between both groups most likely occurred in the Paranaense Forest after a secondary contact, which led to fixed heterozygotes as a consequence of parthenogenesis. Otherwise, sexual segregation would have disrupted multilocus genotypes. Only a small number of heterozygous genotypes of all the possible combinations are found in nature. We propose the occurrence of a hybrid zone in the Paranaense Forest. The fact that it is one of the most important biodiversity hotspots of the world, together with its key role for investigating evolutionary processes, makes it worthy of conservation. This is the first genetic evidence of bisexuality in N. cervinus.


Subject(s)
Genetic Variation , Ribosomes/genetics , Sexual Behavior, Animal , Weevils/genetics , Animals , DNA, Ribosomal Spacer/genetics , Evolution, Molecular , Genotype , Heterozygote , Multigene Family/genetics , Phylogeny , Reproduction/genetics , Weevils/physiology
4.
Ecol Evol ; 6(15): 5431-45, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27551394

ABSTRACT

Previous research revealed complex diversification patterns in the parthenogenetic weevil Naupactus cervinus. To understand the origin of clonal diversity and successful spreading of this weevil, we investigated its geographic origin and possible dispersal routes and whether parthenogens can persist in habitats under unsuitable environmental conditions. This study is based on samples taken throughout a broad area of the species' range. We used both mitochondrial and nuclear markers and applied phylogenetic and network analyses to infer possible relationships between haplotypes. Bayesian phylogeographic analyses and ecological niche modeling were used to investigate the processes that shaped genetic diversity and enabled the colonization of new geographic areas. Southeastern Brazil emerges as the original distribution area of N. cervinus. We detected two range expansions, one along natural corridors during the Pleistocene and the other in countries outside South America during recent times. Isolation due to climate shifts during the early Pleistocene led to diversification in two divergent clades, which probably survived in different refugia of the Paranaense Forest and the Paraná River delta. The origin of the clonal diversity was probably a complex process including mutational diversification, hybridization, and secondary colonization. The establishment of N. cervinus in areas outside its native range may indicate adaptation to drier and cooler conditions. Parthenogenesis would be advantageous for the colonization of new environments by preventing the breakup of successful gene combinations. As in other insect pests, the present distribution of N. cervinus results from both its evolutionary history and its recent history related to human activities.

5.
BMC Evol Biol ; 10: 340, 2010 Nov 04.
Article in English | MEDLINE | ID: mdl-21050430

ABSTRACT

BACKGROUND: Maternally inherited endosymbionts like Wolbachia pipientis are in linkage disequilibrium with the mtDNA of their hosts. Therefore, they can induce selective sweeps, decreasing genetic diversity over many generations. This sex ratio distorter, that is involved in the origin of parthenogenesis and other reproductive alterations, infects the parthenogenetic weevil Naupactus cervinus, a serious pest of ornamental and fruit plants. RESULTS: Molecular evolution analyses of mitochondrial (COI) and nuclear (ITS1) sequences from 309 individuals of Naupactus cervinus sampled over a broad range of its geographical distribution were carried out. Our results demonstrate lack of recombination in the nuclear fragment, non-random association between nuclear and mitochondrial genomes and the consequent coevolution of both genomes, being an indirect evidence of apomixis. This weevil is infected by a single Wolbachia strain, which could have caused a moderate bottleneck in the invaded population which survived the initial infection. CONCLUSIONS: Clonal reproduction and Wolbachia infection induce the coevolution of bacterial, mitochondrial and nuclear genomes. The time elapsed since the Wolbachia invasion would have erased the traces of the demographic crash in the mtDNA, being the nuclear genome the only one that retained the signal of the bottleneck. The amount of genetic change accumulated in the mtDNA and the high prevalence of Wolbachia in all populations of N. cervinus agree with the hypothesis of an ancient infection. Wolbachia probably had great influence in shaping the genetic diversity of N. cervinus. However, it would have not caused the extinction of males, since sexual and asexual infected lineages coexisted until recent times.


Subject(s)
Evolution, Molecular , Genetic Variation/genetics , Weevils/genetics , Weevils/microbiology , Wolbachia/pathogenicity , Animals , DNA, Mitochondrial/genetics , Female , Male , Phylogeny , Weevils/classification
6.
Theor Appl Genet ; 119(6): 1053-67, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19639296

ABSTRACT

The highland region or Northwestern Argentina (NWA) is one of the southernmost areas of native maize cultivation and constitutes an expansion of the peruvian Andes sphere of influence. To examine the genetic diversity and racial affiliations of the landraces cultivated in this area, 18 microsatellite markers were used to characterize 147 individuals from 6 maize races representative of traditional materials. For the whole data set, a total of 184 alleles were found, with an average of 10.2 alleles per locus. The average gene diversity was 0.571. The observed patterns of genetic differentiation suggest that historical association is probably the main factor in shaping population structure for the landraces studied here. In agreement with morphological and cytogenetic data, Bayesian analysis of NWA landraces revealed the occurrence of three main gene pools. Assessment of racial affiliations using a combined dataset including previous data on American landraces showed a clear relationship between one of these gene pools and typical Andean races, whereas the remaining two gene pools exhibited a closer association to Caribbean accessions and native germplasm from the United States, respectively. These results highlight the importance of integrating regional genetic studies if a deeper understanding of maize diversification and dispersal is to be achieved.


Subject(s)
Crops, Agricultural/genetics , DNA, Plant/genetics , Genetic Variation , Microsatellite Repeats , Zea mays/genetics , Alleles , Argentina , Bayes Theorem , Chromosomes, Plant , DNA/genetics , DNA/isolation & purification , Evolution, Molecular , Gene Frequency , Gene Pool , Genetic Markers , Genotype , Geography , Models, Statistical , Zea mays/classification
7.
Genetica ; 132(1): 1-8, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17318315

ABSTRACT

Anastrepha fraterculus is an important pest of commercial fruits in South America. The variability observed for morphological and behavioural traits as well as genetic markers suggests that A. fraterculus represents a complex of synmorphic species rather than a single biological species. We studied the correlation between geographical distribution and genetic variation in natural populations from Argentina and south Brazil. Fragments of the mitochondrial gene COII were sequenced in 28 individuals. The matrix of aligned sequences was phylogenetically analysed by parsimony, yielding a cladogram of haplotypes. Based on Templeton's nested method, no clade showed any geographic pattern for the gene COII, indicating lack of significant association between haplotypic variability and geographic distribution. The analysis of nucleotide substitution distances by Neighbour-Joining algorithm showed that geographically distant populations exhibit low genetic distances. The corresponding trees clustered the populations without showing any geographic pattern. This result suggests that the populations studied are not reproductively isolated.


Subject(s)
Genetic Variation , Tephritidae/classification , Tephritidae/genetics , Animals , Argentina , Brazil , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Genes, Mitochondrial , Haplotypes , Phylogeny , Population , Tephritidae/anatomy & histology
8.
Genetics ; 177(2): 895-904, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17954923

ABSTRACT

Cytogenetic analysis of maize landraces from northwestern Argentina has revealed an altitudinal cline in the mean number of B chromosomes (B's) per plant, with cultivars growing at higher altitudes exhibiting a higher number of B's. Altitudinal and longitudinal clines are frequently interpreted as evidence of selection, however, they can also be produced by the interplay between drift and spatially restricted gene flow or by admixture between previously isolated populations that have come into secondary contact. Here, we test the adaptive significance of the observed altitudinal gradient by comparing the levels of differentiation in the mean number of B's to those obtained from 18 selectively neutral loci [simple sequence repeats (SSRs)] among seven populations of the cline. The adequacy of alternative genetic-differentiation measures was determined, and associations between cytogenetic, genetic, and altitudinal distances were assessed by means of matrix- correspondence tests. No evidence for association between pairwise F(ST) and altitudinal distance or B-chromosome differentiation was found. The contrasting pattern of altitudinal divergence between the mean number of B's per plant and the genetic differentiation at SSR loci indicates that demographic processes cannot account for the observed levels of divergence in the mean number of B's.


Subject(s)
Chromosomes, Plant , Polymorphism, Genetic , Zea mays/genetics , Adaptation, Physiological , Argentina , Biometry
9.
Proc Biol Sci ; 274(1609): 545-54, 2007 Feb 22.
Article in English | MEDLINE | ID: mdl-17476775

ABSTRACT

Archaeological maize specimens from Andean sites of southern South America, dating from 400 to 1400 years before present, were tested for the presence of ancient DNA and three microsatellite loci were typed in the specimens that gave positive results. Genotypes were also obtained for 146 individuals corresponding to modern landraces currently cultivated in the same areas and for 21 plants from Argentinian lowland races. Sequence analysis of cloned ancient DNA products revealed a high incidence of substitutions appearing in only one clone, with transitions prevalent. In the archaeological specimens, there was no evidence of polymorphism at any one of the three microsatellite loci: each exhibited a single allelic variant, identical to the most frequent allele found in contemporary populations belonging to races Amarillo Chico, Amarillo Grande, Blanco and Altiplano. Affiliation between ancient specimens and a set of races from the Andean complex was further supported by assignment tests. The striking genetic uniformity displayed by the ancient specimens and their close relationship with the Andean complex suggest that the latter gene pool has predominated in the western regions of southern South America for at least the past 1400 years. The results support hypotheses suggesting that maize cultivation initially spread into South America via a highland route, rather than through the lowlands.


Subject(s)
Crops, Agricultural/genetics , Microsatellite Repeats , Zea mays/genetics , Crops, Agricultural/classification , Genotype , Geography , Phylogeny , Polymorphism, Genetic , Sequence Analysis, DNA , South America , Zea mays/classification
10.
Genetica ; 126(3): 353-68, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16636929

ABSTRACT

A phylogeographic approach was conducted to assess the geographic structure and genetic variation in populations of the boll weevil Anthonomus grandis, which is the most harmful insect pest of cotton in the Americas. COI and COII mitochondrial gene sequences were analyzed to test a former hypothesis on the origin of the boll weevil in Argentina, Brazil and Paraguay, using samples from Mexico and USA as putative source populations. The analysis of variability suggests that populations from South American cotton fields and nearby disturbed areas form a phylogroup with a central haplotype herein called A, which is the most common and widespread in USA and South America. The population from Texas has the A haplotype as the most frequent and gathers in the same group as the South American populations associated with cotton. The sample from Tecomán (México) shows high values of within-nucleotide divergence, shares no haplotype in common with the South American samples, and forms a phylogroup separated by several mutational steps. The sample from Iguazú National Park (Misiones Province, Argentina) has similar characteristics, with highly divergent haplotypes forming a phylogroup closer to the samples from cotton fields, than to the Mexican group. We propose that in South America there are: populations with characteristics of recent invaders, which would be remnants of "bottlenecks" that occurred after single or multiple colonization events, probably from the United States, and ancient populations associated with native forests, partially isolated by events of historical fragmentation.


Subject(s)
Genetic Variation , Phylogeny , Weevils/physiology , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Genetics, Population , Molecular Sequence Data , South America
11.
Cladistics ; 21(2): 131-142, 2005 Apr.
Article in English | MEDLINE | ID: mdl-34892863

ABSTRACT

The Pantomorus-Naupactus complex is a Neotropical group of broad-nosed weevils (Coleoptera: Curculionidae) including several parthenogenetic species usually assigned to the genera Naupactus Dejean, Pantomorus Schoenherr, Asynonychus Crotch, Aramigus Horn, Eurymetopus Schoenherr and Graphognathus Buchanan. Sixteen species were studied to test hypotheses on the monophyly of these genera, and on the origin of the parthenogenetic lineages. A matrix of 30 morphological characters and 999 positions of the Cytochrome Oxidase I gene, was analyzed with separate partitions and simultaneously, under equal and implied weights, and with different transversion/transitions costs. The ILD test indicates that the incongruence between the molecular and morphological data is not significant. Under equal weights, the molecular data resulted in a single tree and morphology in 34 trees; under implied weights morphology gave a different tree, and under TV:TS ≥ 4:1 molecular and combined analyses resulted in the same optimal tree. According to the latter, Naupactus includes Graphognathus, and is thus paraphyletic and basal regarding remaining genera, Pantomorus is polyphyletic and includes Aramigus and Asynonychus, and Eurymetopus is monophyletic. The species in which apomictic parthenogenesis has been verified (Aramigus tessellatus, Asynonychus cervinus and Graphognathus lecuoloma), belong to different clades of the Pantomorus-Naupactus complex, with basal sexual relatives.

12.
Cladistics ; 21(4): 375-389, 2005 Aug.
Article in English | MEDLINE | ID: mdl-34892970

ABSTRACT

The neotropical genus Dichroplus and related genera are characterized by a relatively uniform external morphology and a remarkably divergent male genitalia and hence its taxonomy is controversial. It also shows an extreme karyotypic diversification. In this study we used molecular and morphological characters to test the monophyly of the genus and to evaluate chromosome evolution. Twenty-seven species from Dichroplus and related genera were included in the analysis. Morphological characters refer to the general morphology, male genitalia and female structures. Molecular studies were performed, sequencing part of two mitochondrial genes, cytochrome oxidase I and II. Independent and combined phylogenetic analyses of the data were performed under maximum parsimony. The karyotypic characters (rearrangements) were either mapped onto the combined topology or combined with the other data sets. While the molecular analysis confirms some results attained with morphology, some others do not. All point towards the paraphyly of the genus. Our results show the relevance of morphological data in phylogenetic studies because morphology and molecules supply complementary evidence. The mapping of chromosome characters on the combined tree shows that the most extreme karyotype, in D. silveiraguidoi, is a derived condition, probably reached through several centric fusions, and that X-autosome centric fusions were recurrently fixed during the evolution of the group.

SELECTION OF CITATIONS
SEARCH DETAIL
...