Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Biol ; 22(1): 141, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926709

ABSTRACT

BACKGROUND: The Percidae family comprises many fish species of major importance for aquaculture and fisheries. Based on three new chromosome-scale assemblies in Perca fluviatilis, Perca schrenkii, and Sander vitreus along with additional percid fish reference genomes, we provide an evolutionary and comparative genomic analysis of their sex-determination systems. RESULTS: We explored the fate of a duplicated anti-Mullerian hormone receptor type-2 gene (amhr2bY), previously suggested to be the master sex-determining (MSD) gene in P. flavescens. Phylogenetically related and structurally similar amhr2 duplicates (amhr2b) were found in P. schrenkii and Sander lucioperca, potentially dating this duplication event to their last common ancestor around 19-27 Mya. In P. fluviatilis and S. vitreus, this amhr2b duplicate has been likely lost while it was subject to amplification in S. lucioperca. Analyses of the amhr2b locus in P. schrenkii suggest that this duplication could be also male-specific as it is in P. flavescens. In P. fluviatilis, a relatively small (100 kb) non-recombinant sex-determining region (SDR) was characterized on chromosome 18 using population-genomics approaches. This SDR is characterized by many male-specific single-nucleotide variations (SNVs) and no large duplication/insertion event, suggesting that P. fluviatilis has a male heterogametic sex-determination system (XX/XY), generated by allelic diversification. This SDR contains six annotated genes, including three (c18h1orf198, hsdl1, tbc1d32) with higher expression in the testis than in the ovary. CONCLUSIONS: Together, our results provide a new example of the highly dynamic sex chromosome turnover in teleosts and provide new genomic resources for Percidae, including sex-genotyping tools for all three known Perca species.


Subject(s)
Evolution, Molecular , Sex Determination Processes , Animals , Sex Determination Processes/genetics , Male , Female , Perches/genetics , Phylogeny , Receptors, Peptide/genetics , Genome , Receptors, Transforming Growth Factor beta
2.
bioRxiv ; 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38014084

ABSTRACT

The Percidae family comprises many fish species of major importance for aquaculture and fisheries. Based on three new chromosome-scale assemblies in Perca fluviatilis, Perca schrenkii and Sander vitreus along with additional percid fish reference genomes, we provide an evolutionary and comparative genomic analysis of their sex-determination systems. We explored the fate of a duplicated anti-Mullerian hormone receptor type-2 gene (amhr2bY), previously suggested to be the master sex determining (MSD) gene in P. flavescens. Phylogenetically related and structurally similar amhr2 duplications (amhr2b) were found in P. schrenkii and Sander lucioperca, potentially dating this duplication event to their last common ancestor around 19-27 Mya. In P. fluviatilis and S. vitreus, this amhr2b duplicate has been lost while it was subject to amplification in S. lucioperca. Analyses of the amhr2b locus in P. schrenkii suggest that this duplication could be also male-specific as it is in P. flavescens. In P. fluviatilis, a relatively small (100 kb) non-recombinant sex-determining region (SDR) was characterized on chromosome-18 using population-genomics approaches. This SDR is characterized by many male-specific single-nucleotide variants (SNVs) and no large duplication/insertion event, suggesting that P. fluviatilis has a male heterogametic sex determination system (XX/XY), generated by allelic diversification. This SDR contains six annotated genes, including three (c18h1orf198, hsdl1, tbc1d32) with higher expression in testis than ovary. Together, our results provide a new example of the highly dynamic sex chromosome turnover in teleosts and provide new genomic resources for Percidae, including sex-genotyping tools for all three known Perca species.

3.
Hortic Res ; 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35039854

ABSTRACT

Most commercial peach [Prunus persica (L.) Batsch] cultivars have leaves with extrafloral nectaries (EFNs). Breeders have selected this character over time, as they observed that the eglandular phenotype resulted in high susceptibility to peach powdery mildew, a major disease of peach trees. EFNs are controlled by a Mendelian locus (E), mapped on chromosome 7. However, the genetic factor underlying E was unknown. In order to address this point, we developed a mapping population of 833 individuals derived from the selfing of "Malo Konare", a Bulgarian peach cultivar, heterozygous for the trait. This progeny was used to investigate the E-locus region, along with additional resources including peach genomic resequencing data, and 271 individuals from various origins used for validation. High-resolution mapping delimited a 40.6 kbp interval including the E-locus and four genes. Moreover, three double-recombinants allowed identifying Prupe.7G121100, a LMI1-like homeodomain leucine zipper (HD-Zip) transcription factor, as a likely candidate for the trait. By comparing peach genomic resequencing data from individuals with contrasted phenotypes, a MITE-like transposable element of the hAT superfamily (mMoshan) was identified in the third exon of Prupe.7G121100. It was associated with the absence or globose phenotype of EFNs. The insertion of the transposon was positively correlated with enhanced expression of Prupe.7G121100. Furthermore, a PCR marker designed from the sequence-variants, allowed to properly assign the phenotypes of all the individuals studied. These findings provide valuable information on the genetic control of a trait poorly known so far although selected for a long time in peach.

4.
Phytopathology ; 109(4): 615-622, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30256187

ABSTRACT

Root-knot nematodes (RKN) (Meloidogyne spp.) are worldwide pests that affect a considerable number of plants, among which stone fruit (Prunus spp.) are severely attacked. Prevalent RKN species are Meloidogyne arenaria, M. incognita, and M. javanica in stone fruit but the emergent M. ethiopica and M. enterolobii are also reported to challenge perennial crops. In Prunus spp., the complete-spectrum resistance (R) gene Ma from plum and the more restricted-spectrum R genes RMia from peach and RMja from almond completely inhibit nematode multiplication and gall formation of the RKN species that they control. This study aimed to update the resistance spectra of these three major genes by evaluating their activity toward one isolate of the yet-untested RKN species mentioned above. To state whether a given gene controls a particular species, the principle of our experiment was to genotype with appropriate markers a number of individuals segregating for this gene and then to phenotype these individuals. A perfect matching of the genotype and the phenotype of individuals indicates that the gene of interest is active against and, thus, controls the corresponding isolate of this RKN species. Segregating materials used were an Ma F1 plum progeny, an RMia F2 peach progeny, and an RMja F2 almond progeny. In addition to previous data, our results establish a clear spectrum for each of the three genes toward isolates from both the three prevalent species and the two emerging species. Ultimately, our results reveal that (i) Ma controls all of them, (ii) RMja controls all species except M. incognita and M. floridensis, and (iii) RMia controls M. arenaria, M. incognita, and M. ethiopica but not M. javanica or M. enterolobii. Our data should have wide implications for RKN resistance management and breeding and for deciphering the molecular mechanisms of the spectrum of RKN R genes.


Subject(s)
Plant Immunity , Prunus , Tylenchoidea , Animals , Genes, Plant , Genotype , Phenotype , Plant Diseases , Plant Immunity/genetics , Prunus/genetics , Prunus/immunology , Prunus/parasitology , Tylenchoidea/immunology , Tylenchoidea/parasitology
5.
J Exp Bot ; 67(11): 3419-31, 2016 05.
Article in English | MEDLINE | ID: mdl-27117339

ABSTRACT

Knowledge of the genetic control of sugar metabolism is essential to enhance fruit quality and promote fruit consumption. The sugar content and composition of fruits varies with species, cultivar and stage of development, and is controlled by multiple enzymes. A QTL (quantitative trait locus) study was performed on peach fruit [Prunus persica (L.) Batsch], the model species for Prunus Progeny derived from an interspecific cross between P. persica cultivars and P. davidiana was used. Dynamic QTLs for fresh weight, sugars, acids, and enzyme activities related to sugar metabolism were detected at different stages during fruit development. Changing effects of alleles during fruit growth were observed, including inversions close to maturity. This QTL analysis was supplemented by the identification of genes annotated on the peach genome as enzymes linked to sugar metabolism or sugar transporters. Several cases of co-locations between annotated genes, QTLs for enzyme activities and QTLs controlling metabolite concentrations were observed and discussed. These co-locations raise hypotheses regarding the functional regulation of sugar metabolism and pave the way for further analyses to enable the identification of the underlying genes. In conclusion, we identified the potential impact on fruit breeding of the modification of QTL effect close to maturity.


Subject(s)
Carbohydrate Metabolism/genetics , Prunus persica/genetics , Crosses, Genetic , Fruit/enzymology , Fruit/genetics , Fruit/growth & development , Prunus persica/enzymology , Prunus persica/growth & development , Quantitative Trait Loci
6.
Genome Biol ; 12(12): R119, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22136458

ABSTRACT

BACKGROUND: Whole genome duplication is a common evolutionary event in plants. Bread wheat (Triticum aestivum L.) is a good model to investigate the impact of paleo- and neoduplications on the organization and function of modern plant genomes. RESULTS: We performed an RNA sequencing-based inference of the grain filling gene network in bread wheat and identified a set of 37,695 non-redundant sequence clusters, which is an unprecedented resolution corresponding to an estimated half of the wheat genome unigene repertoire. Using the Brachypodium distachyon genome as a reference for the Triticeae, we classified gene clusters into orthologous, paralogous, and homoeologous relationships. Based on this wheat gene evolutionary classification, older duplicated copies (dating back 50 to 70 million years) exhibit more than 80% gene loss and expression divergence while recent duplicates (dating back 1.5 to 3 million years) show only 54% gene loss and 36 to 49% expression divergence. CONCLUSIONS: We suggest that structural shuffling due to duplicated gene loss is a rapid process, whereas functional shuffling due to neo- and/or subfunctionalization of duplicates is a longer process, and that both shuffling mechanisms drive functional redundancy erosion. We conclude that, as a result of these mechanisms, half the gene duplicates in plants are structurally and functionally altered within 10 million years of evolution, and the diploidization process is completed after 45 to 50 million years following polyploidization.


Subject(s)
Brachypodium/genetics , Chromosomes, Plant/genetics , Genes, Duplicate , Genes, Plant , Ploidies , Triticum/genetics , Biological Evolution , Bread , Genetic Variation , Multigene Family , Phylogeny , Sequence Analysis, RNA , Synteny
7.
Plant J ; 65(5): 745-56, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21251102

ABSTRACT

Monitoring nitrogen use efficiency (NUE) in plants is becoming essential to maintain yield while reducing fertilizer usage. Optimized NUE application in major crops is essential for long-term sustainability of agriculture production. Here, we report the precise identification of 11 major chromosomal regions controlling NUE in wheat that co-localise with key developmental genes such as Ppd (photoperiod sensitivity), Vrn (vernalization requirement), Rht (reduced height) and can be considered as robust markers from a molecular breeding perspective. Physical mapping, sequencing, annotation and candidate gene validation of an NUE metaQTL on wheat chromosome 3B allowed us to propose that a glutamate synthase (GoGAT) gene that is conserved structurally and functionally at orthologous positions in rice, sorghum and maize genomes may contribute to NUE in wheat and other cereals. We propose an evolutionary model for the NUE locus in cereals from a common ancestral region, involving species specific shuffling events such as gene deletion, inversion, transposition and the invasion of repetitive elements.


Subject(s)
Evolution, Molecular , Genome, Plant , Nitrogen/metabolism , Physical Chromosome Mapping , Triticum/genetics , Chromosomes, Plant , DNA, Plant/genetics , Quantitative Trait Loci , Sequence Analysis, DNA , Synteny , Triticum/metabolism
8.
Funct Integr Genomics ; 11(1): 71-83, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20697765

ABSTRACT

Grain dietary fiber content in wheat not only affects its end use and technological properties including milling, baking and animal feed but is also of great importance for health benefits. In this study, integration of association genetics (seven detected loci on chromosomes 1B, 3A, 3D, 5B, 6B, 7A, 7B) and meta-QTL (three consensus QTL on chromosomes 1B, 3D and 6B) analyses allowed the identification of seven chromosomal regions underlying grain dietary fiber content in bread wheat. Based either on a diversity panel or on bi-parental populations, we clearly demonstrate that this trait is mainly driven by a major locus located on chromosome 1B associated with a log of p value >13 and a LOD score >8, respectively. In parallel, we identified 73 genes differentially expressed during the grain development and between genotypes with contrasting grain fiber contents. Integration of quantitative genetics and transcriptomic data allowed us to propose a short list of candidate genes that are conserved in the rice, sorghum and Brachypodium chromosome regions orthologous to the seven wheat grain fiber content QTL and that can be considered as major candidate genes for future improvement of the grain dietary fiber content in bread wheat breeding programs.


Subject(s)
Bread/analysis , Dietary Fiber , Edible Grain/genetics , Genes, Plant/genetics , Genomics , Triticum/genetics , Biomarkers/metabolism , Brachypodium/genetics , Chromosome Mapping , Chromosomes, Plant , Edible Grain/growth & development , Gene Expression Profiling , Genotype , Linkage Disequilibrium , Microsatellite Repeats , Oligonucleotide Array Sequence Analysis , Oryza/genetics , Phenotype , Quantitative Trait Loci , RNA, Messenger/genetics , RNA, Plant/genetics , Reverse Transcriptase Polymerase Chain Reaction , Triticum/growth & development
9.
Funct Integr Genomics ; 9(4): 473-84, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19575250

ABSTRACT

Recent updates in comparative genomics among cereals have provided the opportunity to identify conserved orthologous set (COS) DNA sequences for cross-genome map-based cloning of candidate genes underpinning quantitative traits. New tools are described that are applicable to any cereal genome of interest, namely, alignment criterion for orthologous couples identification, as well as the Intron Spanning Marker software to automatically select intron-spanning primer pairs. In order to test the software, it was applied to the bread wheat genome, and 695 COS markers were assigned to 1,535 wheat loci (on average one marker/2.6 cM) based on 827 robust rice-wheat orthologs. Furthermore, 31 of the 695 COS markers were selected to fine map a pentosan viscosity quantitative trait loci (QTL) on wheat chromosome 7A. Among the 31 COS markers, 14 (45%) were polymorphic between the parental lines and 12 were mapped within the QTL confidence interval with one marker every 0.6 cM defining candidate genes among the rice orthologous region.


Subject(s)
Edible Grain/genetics , Genome, Plant , Genomics/methods , Base Sequence , Expressed Sequence Tags , Genetic Markers , Genotype , Oryza/genetics , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Software , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...