Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(2)2023 01 22.
Article in English | MEDLINE | ID: mdl-36851520

ABSTRACT

Rift Valley Fever virus (RVFV) and Toscana virus (TOSV) are two pathogenic arthropod-borne viruses responsible for zoonotic infections in both humans and animals; as such, they represent a growing threat to public and veterinary health. Interferon-induced transmembrane (IFITM) proteins are broad inhibitors of a large panel of viruses belonging to various families and genera. However, little is known on the interplay between RVFV, TOSV, and the IFITM proteins derived from their naturally infected host species. In this study, we investigated the ability of human, bovine, and camel IFITMs to restrict RVFV and TOSV infection. Our results indicated that TOSV was extremely sensitive to inhibition by all the animal IFITMs tested, while RVFV was inhibited by human IFITM-2 and IFITM-3, but not IFITM-1, and exhibited a more heterogeneous resistance phenotype towards the individual bovine and camel IFITMs tested. Overall, our findings shed some light on the complex and differential interplay between two zoonotic viruses and IFITMs from their naturally infected animal species.


Subject(s)
Rift Valley Fever , Rift Valley fever virus , Sandfly fever Naples virus , Humans , Animals , Cattle , Camelus , Zoonoses , Host Specificity , Interferons , Membrane Proteins
2.
Viruses ; 14(11)2022 11 08.
Article in English | MEDLINE | ID: mdl-36366567

ABSTRACT

Rift Valley fever virus (RVFV) is a pathogenic arthropod-borne virus that can cause serious illness in both ruminants and humans. The virus can be transmitted by an arthropod bite or contact with contaminated fluids or tissues. Two live-attenuated veterinary vaccines-the Smithburn (SB) and Clone 13 (Cl.13)-are currently used during epizootic events in Africa. However, their residual pathogenicity (i.e., SB) or potential of reversion (i.e., Cl.13) causes important adverse effects, strongly limiting their use in the field. In this study, we infected immunocompetent mice with SB or Cl.13 by a subcutaneous or an intranasal inoculation. Interestingly, we found that, unlike the subcutaneous infection, the intranasal inoculation led to a high mortality rate. In addition, we detected high titers and viral N antigen levels in the brain of both the SB- and Cl.13-infected mice. Overall, we unveil a clear correlation between the pathogenicity and the route of administration of both SB and Cl.13, with the intranasal inoculation leading to a stronger neurovirulence and higher mortality rate than the subcutaneous infection.


Subject(s)
Rift Valley Fever , Rift Valley fever virus , Viral Vaccines , Humans , Animals , Mice , Viral Vaccines/adverse effects , Vaccines, Attenuated/adverse effects , Africa
3.
Viruses ; 12(4)2020 04 07.
Article in English | MEDLINE | ID: mdl-32272808

ABSTRACT

Toscana virus (TOSV) is a Phlebovirus in the Phenuiviridae family, order Bunyavirales, found in the countries surrounding the Mediterranean. TOSV is an important cause of seasonal acute meningitis and encephalitis within its range. Here, we determined the full sequence of the TOSV strain 1500590, a lineage A virus obtained from an infected patient (Marseille, 2007) and used this in combination with other sequence information to construct functional cDNA plasmids encoding the viral L, M, and S antigenomic sequences under the control of the T7 RNA promoter to recover recombinant viruses. Importantly, resequencing identified two single nucleotide changes to a TOSV reference genome, which, when corrected, restored functionality to the polymerase L and made it possible to recover infectious recombinant TOSV (rTOSV) from cDNA, as well as establish a minigenome system. Using reverse genetics, we produced an NSs-deletant rTOSV and also obtained viruses expressing reporter genes instead of NSs. The availability of such a system assists investigating questions that require genetic manipulation of the viral genome, such as investigations into replication and tropism, and beyond these fundamental aspects, also the development of novel vaccine design strategies.


Subject(s)
Genome, Viral , Reverse Genetics/methods , Sandfly fever Naples virus/genetics , A549 Cells , Humans , Phlebotomus Fever/virology , Promoter Regions, Genetic , Sandfly fever Naples virus/classification , Viral Proteins/genetics
4.
Viruses ; 11(10)2019 09 27.
Article in English | MEDLINE | ID: mdl-31569658

ABSTRACT

The cellular response to the recombinant NS1 protein of West Nile virus (NS1WNV) was studied using three different cell types: Vero E6 simian epithelial cells, SH-SY5Y human neuroblastoma cells, and U-87MG human astrocytoma cells. Cells were exposed to two different forms of NS1WNV: (i) the exogenous secreted form, sNS1WNV, added to the extracellular milieu; and (ii) the endogenous NS1WNV, the intracellular form expressed in plasmid-transfected cells. The cell attachment and uptake of sNS1WNV varied with the cell type and were only detectable in Vero E6 and SH-SY5Y cells. Addition of sNS1WNV to the cell culture medium resulted in significant remodeling of the actin filament network in Vero E6 cells. This effect was not observed in SH-SY5Y and U-87MG cells, implying that the cellular uptake of sNS1WNV and actin network remodeling were dependent on cell type. In the three cell types, NS1WNV-expressing cells formed filamentous projections reminiscent of tunneling nanotubes (TNTs). These TNT-like projections were found to contain actin and NS1WNV proteins. Interestingly, similar actin-rich, TNT-like filaments containing NS1WNV and the viral envelope glycoprotein EWNV were also observed in WNV-infected Vero E6 cells.


Subject(s)
Actins/metabolism , Actins/ultrastructure , Nanotubes/ultrastructure , Viral Nonstructural Proteins/metabolism , Animals , Antibodies, Viral , Cell Line , Chlorocebus aethiops , Cloning, Molecular , Cytoskeleton , HEK293 Cells , Humans , Kinetics , Recombinant Proteins , Vero Cells , Viral Nonstructural Proteins/genetics , West Nile virus/genetics
5.
Virology ; 532: 69-81, 2019 06.
Article in English | MEDLINE | ID: mdl-31022666

ABSTRACT

Retroviral integrase (IN) proteins catalyze the permanent integration of the viral genome into host DNA. They can productively recruit cellular proteins, and the human Bromodomain and Extra-Terminal domain (hBET) proteins have been shown to be co-factors for integration of gamma-retroviruses such as Murine Leukemia Virus (MLV) into human cells. By using two-hybrid, co-immunoprecipitation and in vitro interaction assays, we showed that IN of the gamma- Porcine Endogenous Retrovirus-A/C (PERV IN) interacts through its C-terminal domain (CTD) with hBET proteins. We observed that PERV IN interacts with the BRD2, BRD3 and BRD4 proteins in vitro and that the BRD2 protein specifically binds and co-localizes with PERV IN protein in the nucleus of cells. We further mapped the interaction sites to the conserved Extra-Terminal (ET) domain of the hBET proteins and to several amino acids of the of the C-terminal tail of the PERV IN CTD. Finally, we determined the first experimental structure of an IN CTD - BET ET complex from small-angle X-ray scattering data (SAXS). We showed that the two factors assemble as two distinct modules linked by a short loop which confers partial flexibility. The SAXS-restrained model is structurally compatible with the binding of the PERV intasome to BRD2. Altogether, these data confirm the important role of host BET proteins in the gamma-retroviruses' targeting site and efficiency of integration.


Subject(s)
Cell Cycle Proteins/chemistry , Endogenous Retroviruses/genetics , Host-Pathogen Interactions/genetics , Integrases/chemistry , Transcription Factors/chemistry , Amino Acid Sequence , Animals , Binding Sites , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Nucleus/metabolism , Cell Nucleus/virology , Crystallography, X-Ray , Endogenous Retroviruses/metabolism , Gene Expression , Gene Expression Regulation , HEK293 Cells , Humans , Integrases/genetics , Integrases/metabolism , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Swine , Transcription Factors/genetics , Transcription Factors/metabolism , Virus Integration
6.
PLoS Pathog ; 13(9): e1006610, 2017 09.
Article in English | MEDLINE | ID: mdl-28957419

ABSTRACT

IFITMs are broad antiviral factors that block incoming virions in endosomal vesicles, protecting target cells from infection. In the case of HIV-1, we and others reported the existence of an additional antiviral mechanism through which IFITMs lead to the production of virions of reduced infectivity. However, whether this second mechanism of inhibition is unique to HIV or extends to other viruses is currently unknown. To address this question, we have analyzed the susceptibility of a broad spectrum of viruses to the negative imprinting of the virion particles infectivity by IFITMs. The results we have gathered indicate that this second antiviral property of IFITMs extends well beyond HIV and we were able to identify viruses susceptible to the three IFITMs altogether (HIV-1, SIV, MLV, MPMV, VSV, MeV, EBOV, WNV), as well as viruses that displayed a member-specific susceptibility (EBV, DUGV), or were resistant to all IFITMs (HCV, RVFV, MOPV, AAV). The swapping of genetic elements between resistant and susceptible viruses allowed us to point to specificities in the viral mode of assembly, rather than glycoproteins as dominant factors of susceptibility. However, we also show that, contrarily to X4-, R5-tropic HIV-1 envelopes confer resistance against IFITM3, suggesting that viral receptors add an additional layer of complexity in the IFITMs-HIV interplay. Lastly, we show that the overall antiviral effects ascribed to IFITMs during spreading infections, are the result of a bimodal inhibition in which IFITMs act both by protecting target cells from incoming viruses and in driving the production of virions of reduced infectivity. Overall, our study reports for the first time that the negative imprinting of the virion particles infectivity is a conserved antiviral property of IFITMs and establishes IFITMs as a paradigm of restriction factor capable of interfering with two distinct phases of a virus life cycle.


Subject(s)
Antigens, Differentiation/metabolism , Virion , Virus Replication , Cell Line , HIV-1/physiology , Host-Pathogen Interactions , Humans , Virus Internalization
7.
Hum Gene Ther ; 27(2): 166-83, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26886833

ABSTRACT

Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in a deficiency in chloride channel activity. In this study, extracellular vesicles (EVs), microvesicles, and exosomes were used as vehicles to deliver exogenous CFTR glycoprotein and its encoding mRNA (mRNA(GFP-CFTR)) to CF cells to correct the CFTR chloride channel function. We isolated microvesicles and exosomes from the culture medium of CFTR-positive Calu-3 cells, or from A549 cells transduced with an adenoviral vector overexpressing a GFP-tagged CFTR (GFP-CFTR). Both microvesicles and exosomes had the capacity to package and deliver the GFP-CFTR glycoprotein and mRNA(GFP-CFTR) to target cells in a dose-dependent manner. Homologous versus heterologous EV-to-cell transfer was studied, and it appeared that the cellular uptake of EVs was significantly more efficient in homologous transfer. The incubation of CF15 cells, a nasal epithelial cell line homozygous for the ΔF508 CFTR mutation, with microvesicles or exosomes loaded with GFP-CFTR resulted in the correction of the CFTR function in CF cells in a dose-dependent manner. A time-course analysis of EV-transduced CF cells suggested that CFTR transferred as mature glycoprotein was responsible for the CFTR-associated channel activity detected at early times posttransduction, whereas GFP-CFTR translated from exogenous mRNA(GFP-CFTR) was responsible for the CFTR function at later times. Collectively, this study showed the potential application of microvesicles and exosomes as vectors for CFTR transfer and functional correction of the genetic defect in human CF cells.


Subject(s)
Cell-Derived Microparticles/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/metabolism , Extracellular Vesicles/chemistry , Genetic Therapy/methods , RNA, Messenger/genetics , Transduction, Genetic/methods , Adenoviruses, Human/genetics , Adenoviruses, Human/metabolism , Cell Line, Tumor , Cell-Derived Microparticles/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/pathology , Exosomes/chemistry , Exosomes/metabolism , Extracellular Vesicles/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , RNA, Messenger/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology
8.
J Gen Virol ; 96(10): 3124-3130, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26296914

ABSTRACT

Porcine endogenous retroviruses (PERVs) are present in the genomes of pig cells. The PERV-A/C recombinant virus can infect human cells and is a major risk of zoonotic disease in the case of xenotransplantation of pig organs to humans. Raltegravir (RAL) is a viral integrase (IN) inhibitor used in highly active antiretroviral treatment. In the present study, we explored the potential use of RAL against PERV-A/C. We report (i) a three-dimensional model of the PERV-A/C intasome complexed with RAL, (ii) the sensitivity of PERV-A/C IN to RAL in vitro and (iii) the sensitivity of a PERV-A/C-IRES-GFP recombinant virus to RAL in cellulo. We demonstrated that RAL is a potent inhibitor against PERV-A/C IN and PERV-A/C replication with IC50s in the nanomolar range. To date, the use of retroviral inhibitors remains the only way to control the risk of zoonotic PERV infection during pig-to-human xenotransplantation.


Subject(s)
Antiviral Agents/pharmacology , Endogenous Retroviruses/enzymology , Endogenous Retroviruses/physiology , Integrases/analysis , Raltegravir Potassium/pharmacology , Virus Integration/drug effects , Animals , Antiviral Agents/chemistry , Crystallography, X-Ray , Endogenous Retroviruses/drug effects , Inhibitory Concentration 50 , Integrases/chemistry , Protein Binding , Protein Conformation , Raltegravir Potassium/chemistry , Swine
9.
PLoS One ; 6(8): e23032, 2011.
Article in English | MEDLINE | ID: mdl-21857987

ABSTRACT

Integrase (IN) is an important therapeutic target in the search for anti-Human Immunodeficiency Virus (HIV) inhibitors. This enzyme is composed of three domains and is hard to crystallize in its full form. First structural results on IN were obtained on the catalytic core domain (CCD) of the avian Rous and Sarcoma Virus strain Schmidt-Ruppin A (RSV-A) and on the CCD of HIV-1 IN. A ribonuclease-H like motif was revealed as well as a dimeric interface stabilized by two pairs of α-helices (α1/α5, α5/α1). These structural features have been validated in other structures of IN CCDs. We have determined the crystal structure of the Rous-associated virus type-1 (RAV-1) IN CCD to 1.8 Å resolution. RAV-1 IN shows a standard activity for integration and its CCD differs in sequence from that of RSV-A by a single accessible residue in position 182 (substitution A182T). Surprisingly, the CCD of RAV-1 IN associates itself with an unexpected dimeric interface characterized by three pairs of α-helices (α3/α5, α1/α1, α5/α3). A182 is not involved in this novel interface, which results from a rigid body rearrangement of the protein at its α1, α3, α5 surface. A new basic groove that is suitable for single-stranded nucleic acid binding is observed at the surface of the dimer. We have subsequently determined the structure of the mutant A182T of RAV-1 IN CCD and obtained a RSV-A IN CCD-like structure with two pairs of buried α-helices at the interface. Our results suggest that the CCD of avian INs can dimerize in more than one state. Such flexibility can further explain the multifunctionality of retroviral INs, which beside integration of dsDNA are implicated in different steps of the retroviral cycle in presence of viral ssRNA.


Subject(s)
Alpharetrovirus/enzymology , Catalytic Domain , Integrases/chemistry , Viral Proteins/chemistry , Amino Acid Sequence , Avian Leukosis Virus/enzymology , Avian Sarcoma Viruses/enzymology , Binding Sites/genetics , Crystallography, X-Ray , Humans , Hydrogen-Ion Concentration , Integrases/genetics , Integrases/metabolism , Models, Molecular , Molecular Sequence Data , Mutation , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Scattering, Small Angle , Sequence Homology, Amino Acid , Viral Proteins/genetics , Viral Proteins/metabolism , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...