Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35062518

ABSTRACT

Due to planetary movement of planet gears, the vibration signal perceived by a stationary sensor is modulated and difficult to diagnose. This paper proposed a vibration separation methodology compensated by a time-varying transfer function (TVTF-VS), which is a further development of the vibration separation (VS) method in the diagnosis of non-hunting tooth planetary gearboxes. On the basis of VS, multi-teeth VS is proposed to extract and synthesize the meshing signal of a planet gear using a single transducer. Considering the movement regularity of a planetary gearbox, the time-varying transfer function (TVTF) is represented by a generalized expression. The TVTF is constructed using a segment of healthy signal and an evaluation indicator is established to optimize the parameters of the TVTF. The constructed TVTF is applied to overcome the amplitude modulation effect and highlight fault characteristics. After that, experiments with baseline, pitting, and compound localized faults planet gears were conducted on a non-hunting tooth planetary gearbox test rig, respectively. The results demonstrate that incipient failure on a planet gear can be detected effectively, and relative location of the local faults can be determined accurately.


Subject(s)
Planets , Vibration , Physical Therapy Modalities , Transducers
2.
Sensors (Basel) ; 21(5)2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33800102

ABSTRACT

As an essential part of the transmission system, gearboxes are considered as a major source of vibration. Signal identification of gear vibration is necessary for online monitoring of the mechanical systems. However, in engine-gearbox systems, the ignition impact of the engine is strong, so that the gear vibration is generally submerged. To overcome this issue, the resonance-based signal sparse decomposition (RSSD) method is used in this paper based on different oscillatory behaviors of the gear meshing impact and the engine ignition impact. To improve the accuracy of RSSD under interferences, the meshing frequency energy ratio (MF-ER) index is introduced into RSSD to adaptively choose the decomposition parameters. Before applying the RSSD method, the auto-regression (AR) model is used as a pre-whitening step to eliminate the normal gear meshing vibration, which improves the decomposition performance of RSSD. The effectiveness of the proposed AR-ORSSD (AR-based optimized RSSD) algorithm is tested using both simulated signals and measured vibration signals from an engine-gearbox system in a forklift. Comparisons were made with the RSSD algorithm based on a genetic algorithm. Experimental results indicate that the AR-ORSSD algorithm is superior at identifying gear vibration signals especially when under strong interferences.

SELECTION OF CITATIONS
SEARCH DETAIL
...