Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 29(20): 5955-5967, 2023 10.
Article in English | MEDLINE | ID: mdl-37462298

ABSTRACT

Soils are a major source of global nitric oxide (NO) emissions. However, estimates of soil NO emissions have large uncertainties due to limited observations and multifactorial impacts. Here, we mapped global soil NO emissions, integrating 1356 in-situ NO observations from globally distributed sites with high-resolution climate, soil, and management practice data. We then calculated global and national total NO budgets and revealed the contributions of cropland, grassland, and forest to global soil NO emissions at the national level. The results showed that soil NO emissions were explained mainly by N input, water input and soil pH. Total above-soil NO emissions of the three vegetation cover types were 9.4 Tg N year-1 in 2014, including 5.9 Tg N year-1 (1.04, 95% confidence interval [95% CI]: 0.09-1.99 kg N ha-1 year-1 ) emitted from forest, 1.7 Tg N year-1 (0.68, 95% CI: 0.10-1.26 kg N ha-1 year-1 ) from grassland, and 1.8 Tg N year-1 (0.98, 95% CI: 0.42-1.53 kg N ha-1 year-1 ) from cropland. Soil NO emissions in approximately 57% of 213 countries surveyed were dominated by forests. Our results provide updated inventories of global and national soil NO emissions based on robust data-driven models. These estimates are critical to guiding the mitigation of soil NO emissions and can be used in combination with biogeochemical models.


Subject(s)
Nitric Oxide , Soil , Nitrous Oxide/analysis , Forests , Climate
2.
Sci Total Environ ; 858(Pt 2): 159738, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36334657

ABSTRACT

Nitrous oxide (N2O), as a potent greenhouse gas, must be limited to prevent the global temperature increasing by >2 °C. Cropland is the largest source of anthropogenic N2O emissions; however, earlier estimates for emissions and their exceedances still remain uncertainties. Here, we used a spatially explicit model to estimate cropland N2O emission in 2014 by refined grid-level crop-specific EFs and considered the background emission. We also sought to determine where N2O emissions exceed the "boundary" through analysis of spatial data from representative concentration pathway (RCP) 2.6. The global cropland N2O emission was 2.92 ± 0.59 Tg N yr-1, which far exceeds the 0.82 Tg N yr-1 boundary, over 90 % of cropland areas exceeded the boundary. Western Europe, Southeastern China, Pakistan, and the Ganges Plain exceeded the boundary by >2 kg N ha-1 yr-1. The boundary exceedances showed a positive linear response with respect to total cropland emission and a quadratic response to GDP per capita at the country level. Our study highlights the necessity of accurate estimations of spatial variations in cropland N2O emissions and evaluation of exceedances, to facilitate the development of more effective mitigation measures in different regions.


Subject(s)
Biodiversity , Nitrous Oxide , Nitrous Oxide/analysis , Temperature , Crops, Agricultural/metabolism , Spatial Analysis , China , Agriculture , Soil , Fertilizers/analysis
3.
Sci Data ; 9(1): 233, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614078

ABSTRACT

Excessive use of synthetic nitrogen (N) for Chinese wheat production results in high loss of reactive N loss (Nr; all forms of N except N2) into the environment, causing serious environmental issues. Quantifying Nr loss and its spatial variations therein is vital to optimize N management and mitigate loss. However, accurate, high spatial resolution estimations of Nr from wheat production are lacking due to limitations of data generation and estimation methods. Here, we applied the random forest (RF) algorithm to bottom-up N application rate data, obtained through a survey of millions of farmers, to estimate the Nr loss from wheat production in 2014. The results showed that the average total Nr loss was 52.5 kg N ha-1 (range: 4.6-157.8 kg N ha-1), which accounts for 26.1% of the total N applied. The hotspots for high Nr loss are the same as those high applied N, including northwestern Xinjiang, central-southern Hebei, Shandong, central-northern Jiangsu, and Hubei. Our database could guide regional N management and be used in conjunction with biogeochemical models.

4.
Glob Chang Biol ; 28(2): 480-492, 2022 01.
Article in English | MEDLINE | ID: mdl-34473894

ABSTRACT

Robust global simulation of soil background N2 O emissions (BNEs) is a challenge due to the lack of a comprehensive system for quantification of the variations in their magnitude and location. We mapped global BNEs based on 1353 field observations from globally distributed sites and high-resolution climate and soil data. We then calculated global and national total BNE budgets and compared them to the IPCC-estimated values. The average BNE was 1.10, 0.92, and 0.84 kg N ha-1  year-1 with variations from 0.18 to 3.47 (5th-95th percentile, hereafter), 0.20 to 3.44, and -1.16 to 3.70 kg N ha-1  year-1 for cropland, forestland, and grassland, respectively. Soil pH, soil N mineralization, atmospheric N deposition, soil volumetric water content, and soil temperature were the principle significant drivers of BNEs. The total BNEs of three land use types was lower than IPCC-estimated total BNEs by 0.83 Tg (1012  g) N year-1 , ranging from -47% to 94% across countries. The estimated BNE with cropland values were slightly higher than the IPCC estimates by 0.11 Tg N year-1 , and forestland and grassland lower than the IPCC estimates by 0.4 and 0.54 Tg N year-1 , respectively. Our study underlined the necessity for detailed estimation of the spatial distribution of BNEs to improve the estimates of global N2 O emissions and enable the establishment of more realistic and effective mitigation measures.


Subject(s)
Nitrous Oxide , Soil , Agriculture , Climate , Forests , Nitrous Oxide/analysis
5.
J Agric Food Chem ; 65(47): 10310-10316, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-29110475

ABSTRACT

Preslaughter transport has been reported to decrease the quality of breast meat but not thigh meat of broilers. However, tissue-specific difference in glycogen metabolism between breast and thigh muscles of transported broilers has not been well studied. We thus investigated the differences in meat quality, adenosine phosphates, glycolysis, and bound key enzymes associated with glycolysis metabolism in skeletal muscles with different fiber types of preslaughter transported broilers during summer. Compared to a 0.5 h transport, a 3 h transport during summer decreased ATP content, increased AMP content and AMP/ATP ratio, and accelerated glycolysis metabolism via the upregulation of glycogen phosphorylase expression accompanied by increased activities of bound glycolytic enzymes (hexokinase, pyruvate kinase, and lactate dehydrogenase) in pectoralis major muscle, which subsequently increased the likelihood of pale, soft, and exudative-like breast meat. On the other hand, a 3 h transport induced only a moderate glycolysis metabolism in tibialis anterior muscle, which did not cause any noticeable changes in the quality traits of the thigh meat.


Subject(s)
Animal Husbandry/methods , Chickens/metabolism , Meat/analysis , Muscle, Skeletal/chemistry , Abattoirs , Adenosine Diphosphate/metabolism , Animal Husbandry/instrumentation , Animals , Glycogen/metabolism , Glycolysis , Muscle, Skeletal/metabolism , Pectoralis Muscles/metabolism
6.
J Sci Food Agric ; 97(11): 3733-3741, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28120335

ABSTRACT

BACKGROUND: The effects of dietary carnosine were evaluated on the growth performance, meat quality, antioxidant capacity and muscle fiber characteristics in thigh muscle of 256 one-day-old male broilers assigned to four diets - basal diets supplemented with 0, 100, 200 or 400 mg kg-1 carnosine respectively - during a 42 day experiment. RESULTS: Carnosine concentration and carnosine synthase expression in thigh muscle were linearly increased (P < 0.05) and the feed/gain ratio was decreased (P < 0.05) in the starter period by carnosine addition. Dietary supplementation with carnosine resulted in linear increases in pH45min , redness and cohesiveness and decreases in drip loss, cooking loss, shear force and hardness (P < 0.05). Carnosine addition elevated the activities of antioxidant enzymes and reduced contents of malondialdehyde and carbonyl compounds (P < 0.05). Dietary carnosine linearly decreased diameters and increased densities of muscle fibers (P < 0.01). The ratios of myosin heavy chain (MyHC) I and IIa were increased while that of MyHC IIb was decreased (P < 0.01). The mRNA expressions of genes related to fiber type transformation were linearly up-regulated (P < 0.05). CONCLUSION: These findings indicated that carnosine supplementation was beneficial to improve the growth performance, meat quality, antioxidant capacity and muscle fiber characteristics of broilers. © 2017 Society of Chemical Industry.


Subject(s)
Animal Feed/analysis , Antioxidants/metabolism , Carnosine/metabolism , Chickens/growth & development , Dietary Supplements/analysis , Meat/analysis , Animal Nutritional Physiological Phenomena , Animals , Antioxidants/analysis , Carnosine/analysis , Chickens/metabolism , Female , Male , Muscle, Skeletal/chemistry , Muscle, Skeletal/metabolism
7.
Asian-Australas J Anim Sci ; 30(1): 71-77, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27282969

ABSTRACT

OBJECTIVE: This experiment was conducted to investigate the effects of dietary supplementation with marigold extract on growth performance, pigmentation, antioxidant capacity and meat quality in broiler chickens. METHODS: A total of 320 one-day-old Arbor Acres chickens were randomly divided into 5 groups with 8 replicates of 8 chickens each. The chickens of control group were fed with basal diet and other experimental groups were fed with basal diet supplemented with 0.075%, 0.15%, 0.30%, and 0.60% marigold extract respectively (the corresponding concentrations of lutein were 15, 30, 60, and 120 mg/kg). RESULTS: The results showed that marigold extract supplementation increased the yellowness values of shank, beak, skin and muscle and the redness (a*) value of thigh muscle (linear, p<0.01). Marigold extract supplementation significantly increased the total antioxidant capacity, and the activities of superoxide dismutase in liver and thigh muscle (linear, p<0.01) and significantly decreased the malondialdehyde contents of liver and thigh muscle (linear, p<0.01). Marigold extract supplementation significantly decreased the drip loss and shear force of thigh muscles (linear, p<0.01). There was no significant effect on growth performance with marigold extract supplementation. CONCLUSION: In conclusion, dietary supplementation of marigold extract significantly increased the yellowness values of carcass, antioxidant capacity and meat quality in broiler chickens.

SELECTION OF CITATIONS
SEARCH DETAIL
...