Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 24(3): 987-1000, 2018 03.
Article in English | MEDLINE | ID: mdl-29035007

ABSTRACT

Agricultural soils are widely recognized to be capable of carbon sequestration that contributes to mitigating CO2 emissions. To better understand soil organic carbon (SOC) stock dynamics and its driving and controlling factors corresponding with a period of rapid agronomic evolution from the 1980s to the 2010s in the North China Plain (NCP), we collected data from two region-wide soil sampling campaigns (in the 1980s and 2010s) and conducted an analysis of the controlling factors using the random forest model. Between the 1980s and 2010s, environmental (i.e. soil salinity/fertility) and societal (i.e. policy/techniques) factors both contributed to adoption of new management practices (i.e. chemical fertilizer application/mechanization). Results of our work indicate that SOC stocks in the NCP croplands increased significantly, which also closely related to soil total nitrogen changes. Samples collected near the surface (0-20 cm) and deeper (20-40 cm) both increased by an average of 9.4 and 5.1 Mg C ha-1 , respectively, which are equivalent to increases of 73% and 56% compared with initial SOC stocks in the 1980s. The annual carbon sequestration amount in surface soils reached 10.9 Tg C year-1 , which contributed an estimated 43% of total carbon sequestration in all of China's cropland on just 27% of its area. Successful desalinization and the subsequent increases in carbon (C) inputs, induced by agricultural projects and policies intended to support crop production (i.e. reconstruction of low yield farmland, and agricultural subsidies), combined with improved cultivation practices (i.e. fertilization and straw return) since the early 1980s were the main drivers for the SOC stock increase. This study suggests that rehabilitation of NCP soils to reduce salinity and increase crop yields have also served as a pathway for substantial soil C sequestration.


Subject(s)
Agriculture/methods , Carbon Sequestration , Soil/chemistry , Carbon/analysis , China , Crops, Agricultural/metabolism , Fertilizers/analysis , Nitrogen/chemistry , Nitrogen/metabolism
2.
Sci Rep ; 6: 29966, 2016 07 18.
Article in English | MEDLINE | ID: mdl-27426048

ABSTRACT

Soil erosion is a growing challenge for agricultural production in Northern China. To explore the effect of variation in stubble height and mulching biomass on soil erosion caused by wind, we conducted a field experiment using a quadratic rotation combination design. Results showed that the quantity of straw mulch was the dominant factor affecting soil erosion, and stubble height was of secondary importance. The soil water content in stubble and straw mulching treatments was higher than in a control treatment at 0-20 cm soil, and the tendency in the amount of soil water content was opposite to the amount of wind erosion (r = -0.882, n = 10, p < 0.01). The change in soil water content observed in the stubble and mulch treatments at the 15-20 cm depth was higher than the change from 0-5 cm to 5-10 cm. Combined, the influence of a stubble height of 34 cm and mulch quantity of 4260 kg·ha(-1) lowered the amount of erosion to 0.42 t·ha(-1), and increased the corn yield to 11900 kg·ha(-1). We determined that those were the most appropriate levels of stubble height and straw mulch for crop fields in the semi-arid regions of Northern China.

3.
PLoS One ; 9(1): e86099, 2014.
Article in English | MEDLINE | ID: mdl-24465896

ABSTRACT

Maize grain yield varies highly with water availability as well as with fertilization and relevant agricultural management practices. With a 311-A optimized saturation design, field experiments were conducted between 2006 and 2009 to examine the yield response of spring maize (Zhengdan 958, Zea mays L) to irrigation (I), nitrogen fertilization (total nitrogen, urea-46% nitrogen,) and phosphorus fertilization (P2O5, calcium superphosphate-13% P2O5) in a semi-arid area environment of Northeast China. According to our estimated yield function, the results showed that N is the dominant factor in determining maize grain yield followed by I, while P plays a relatively minor role. The strength of interaction effects among I, N and P on maize grain yield follows the sequence N+I >P+I>N+P. Individually, the interaction effects of N+I and N+P on maize grain yield are positive, whereas that of P+I is negative. To achieve maximum grain yield (10506.0 kg · ha(-1)) for spring maize in the study area, the optimum application rates of I, N and P are 930.4 m(3) · ha(-1), 304.9 kg · ha(-1) and 133.2 kg · ha(-1) respectively that leads to a possible economic profit (EP) of 10548.4 CNY · ha(-1) (CNY, Chinese Yuan). Alternately, to obtain the best EP (10827.3 CNY · ha(-1)), the optimum application rates of I, N and P are 682.4 m(3) · ha(-1), 241.0 kg · ha(-1) and 111.7 kg · ha(-1) respectively that produces a potential grain yield of 10289.5 kg · ha(-1).


Subject(s)
Agricultural Irrigation , Agriculture/methods , Fertilizers , Zea mays/growth & development , China , Fertilizers/analysis , Fertilizers/supply & distribution , Nitrogen/analysis , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...