Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; : 119458, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925466

ABSTRACT

Methane is a short-lived greenhouse gas but has a far greater warming effect than carbon dioxide. At the same time, the livestock sector serves as a large contributor to global emissions of anthropogenic methane. Herein, this work aimed to use cultivated seaweed supplementation to reduce methane emissions and investigate the potential influencing mechanism. To evaluate the feasibility, two cultivated seaweeds, Laminaria japonica Aresch, and Porphyra tenera, along with the enzymatic hydrolysates derived from L. japonica, underwent in vitro trials, and they were both added into corn silage feed (CSF) with different concentrations (1%, 5%, and 10% of CSF) for methane reduction evaluation. The results indicated that >75% and 50% reductions in methane production were observed for the seaweeds and seaweed enzymatic hydrolysates in 9- and 30-day, respectively. Combined high-throughput sequencing and multivariate analysis revealed that supplementation with seaweed and seaweed enzymatic hydrolysates had a notable impact on the prokaryotic community structure. Mantel tests further revealed that significant correlations between the prokaryotic community and methane accumulation (P < 0.05), implying the prokaryotic community plays a role in reducing methane emissions within the rumen. Correspondingly, the networks within the prokaryotic community unveiled the crucial role of propionate/butyrate-producing bacteria in regulating methane emissions through microbial interactions. The predicted function of the prokaryotic community exhibited a significant reduction in the presence of the narB gene in seaweed-supplemented treatments. This reduction may facilitate an increased rate of electron flow toward the nitrate reduction pathway while decreasing the conversion of H2 to methane. These results indicated the supplementation of cultivated seaweeds and the enzymatic hydrolysates has the potential to reshape the community structure of rumen microbial communities, and this alteration appears to be a key factor contributing to their methane production-reduction capability.

2.
Bull Environ Contam Toxicol ; 97(1): 145-50, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27084097

ABSTRACT

Quorum sensing inhibitors (QSIs) are a promising alternative to the antibiotics and unlikely to induce drug resistance. However, toxicity studies on the QSIs remain limited; therefore in this paper we investigated the acute (15 min) and chronic (24 h) toxicity of some potential QSIs on both gram-negative (V. fischeri) and gram-positive bacteria (B. subtilis). It was found that the toxicity of the QSIs differed with the toxicity test periods. QSAR models were developed for both the acute and chronic toxicity, using the interaction energies between QSIs and the relevant proteins, and the frontier orbital energies. Based on the QSAR models, it was suggested that QSIs primarily bind with the luciferase at 15 min, but LuxR at 24 h in V. fischeri; whereas in B. subtilis, the QSIs mainly bind with LuxS. Our study provided an insight into the toxicity mechanism for QSIs during different exposure periods.


Subject(s)
Aliivibrio fischeri/drug effects , Bacillus subtilis/drug effects , Quantitative Structure-Activity Relationship , Quorum Sensing/drug effects , Anti-Bacterial Agents/pharmacology , Furans/toxicity , Lactones/toxicity , Pyrrolidinones/toxicity , Toxicity Tests, Acute , Toxicity Tests, Chronic
3.
Aquat Toxicol ; 150: 165-74, 2014 May.
Article in English | MEDLINE | ID: mdl-24681700

ABSTRACT

The use of herbicide mixtures has become a cost-effective strategy against the evolution of herbicide resistance to protect global food production. Much research has focused on investigating either the herbicidal activities or the toxicity effects of herbicides; however, few of them have investigated both factors. This study investigates the balance between herbicidal activity for Selenastrum capricornutum and toxicity effect toward Photobacterium phosphoreum by determining the joint effects of triazine (simetryn, atrazine, prometon and prometryn) and phenylurea (fenuron, monuron, monolinuron and diuron) herbicides. The results showed that among the four triazines, only simetryn exhibited a unique effect (formation of a pi-sigma bond with the D1 microalga protein and an H-bond with the Luc photobacterial protein); and among 16 triazine-phenylurea binary mixtures, only the mixtures containing simetryn resulted in TU1 values (herbicidal activities of mixtures on S. capricornutum) >TU2 values (toxicity effects of mixtures on P. phosphoreum). However, the other 12 mixtures, which did not contain simetryn, showed the opposite result (TU1

Subject(s)
Chlorophyta/drug effects , Phenylurea Compounds/toxicity , Photobacterium/drug effects , Triazines/toxicity , Water Pollutants, Chemical/toxicity , Algal Proteins/chemistry , Algal Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Chlorophyta/chemistry , Herbicides/toxicity , Lethal Dose 50 , Models, Molecular , Photobacterium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...