Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Food Microbiol ; 122: 104557, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839221

ABSTRACT

To investigate the potential antifungal mechanisms of rhizosphere Actinobacteria against Ceratocystis fimbriata in sweet potato, a comprehensive approach combining biochemical analyses and multi-omics techniques was employed in this study. A total of 163 bacterial strains were isolated from the rhizosphere soil of sweet potato. Among them, strain MEPS155, identified as Streptomyces djakartensis, exhibited robust and consistent inhibition of C. fimbriata mycelial growth in in vitro dual culture assays, attributed to both cell-free supernatant and volatile organic compounds. Moreover, strain MEPS155 demonstrated diverse plant growth-promoting attributes, including the production of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate deaminase, phosphorus solubilization, nitrogen fixation, and enzymatic activities such as cellulase, chitinase, and protease. Notably, strain MEPS155 exhibited efficacy against various sweet potato pathogenic fungi. Following the inoculation of strain MEPS155, a significant reduction (P < 0.05) in malondialdehyde content was observed in sweet potato slices, indicating a potential protective effect. The whole genome of MEPS155 was characterized by a size of 8,030,375 bp, encompassing 7234 coding DNA sequences and 32 secondary metabolite biosynthetic gene clusters. Transcriptomic analysis revealed 1869 differentially expressed genes in the treated group that cultured with C. fimbriata, notably influencing pathways associated with porphyrin metabolism, fatty acid biosynthesis, and biosynthesis of type II polyketide products. These alterations in gene expression are hypothesized to be linked to the production of secondary metabolites contributing to the inhibition of C. fimbriata. Metabolomic analysis identified 1469 potential differently accumulated metabolites (PDAMs) when comparing MEPS155 and the control group. The up-regulated PDAMs were predominantly associated with the biosynthesis of various secondary metabolites, including vanillin, myristic acid, and protocatechuic acid, suggesting potential inhibitory effects on plant pathogenic fungi. Our study underscores the ability of strain S. djakartensis MEPS155 to inhibit C. fimbriata growth through the production of secretory enzymes or secondary metabolites. The findings contribute to a theoretical foundation for future investigations into the role of MEPS155 in postharvest black rot prevention in sweet potato.


Subject(s)
Ascomycota , Ipomoea batatas , Plant Diseases , Rhizosphere , Streptomyces , Ipomoea batatas/microbiology , Streptomyces/genetics , Streptomyces/metabolism , Streptomyces/isolation & purification , Plant Diseases/microbiology , Plant Diseases/prevention & control , Ascomycota/growth & development , Ascomycota/metabolism , Ascomycota/genetics , Soil Microbiology , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Multiomics
2.
Microbiol Res ; 281: 127624, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38295680

ABSTRACT

Cell wall integrity (CWI) is crucial for the growth, development, and host invasion of pathogenic fungi. The APSES transcription factor Swi6 in fungi plays a role in mediating cell wall integrity through the mitogen-activated protein kinase (MAPK) signaling pathway. Ceratocystis fimbriata is a notorious pathogenic fungus responsible for causing black rot in sweet potatoes. In this study, an orthologous APSES transcription factor Swi6 (CfSwi6) downstream of the CWI regulatory pathway in C. fimbriata was characterized. Deletion of CfSWI6 leads to impaired hyphal development, conidiation, and compromised cell wall integrity, resulting in a significant reduction in virulence. Transcriptome analysis revealed the involvement of CfSWI6 in various pathways, including the MAPK pathway, DNA synthesis and stress response. ChIP-seq data provided predictions of potential target genes regulated by CfSwi6. Through yeast one-hybrid, we confirmed the direct binding of CfSwi6 to the promoter of the chitin synthetase gene. In summary, these findings indicated that CfSwi6 plays an important role in the growth, development, and pathogenicity of C. fimbriata. This study provides new insights into the pathogenic mechanism of C. fimbriata in sweet potato and inspires potential strategies to control sweet potato black rot.


Subject(s)
Ceratocystis , Saccharomyces cerevisiae , Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , Virulence/genetics , Saccharomyces cerevisiae/genetics , Cell Wall/metabolism
3.
Fungal Genet Biol ; 170: 103846, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38048937

ABSTRACT

The Erp3 protein, which is an important member of the p24 family, is primarily responsible for the transport of cargo from the ER to the Golgi apparatus in Saccharomyces cerevisiae. However, the function of Erp3 in plant pathogenic fungi has not been reported. In this study, we characterized the ERP3 gene in Ceratocystis fimbriata, which causes the devastating disease sweetpotato black rot. The ΔCferp3 mutants exhibited slow growth, reduced conidia production, attenuated virulence, and reduced ability to induce host to produce toxins. Further analysis revealed that CfErp3 was localized in the ER and vesicles and regulated endocytosis, cell wall integrity, and osmotic stress responses, modulated ROS levels, and the production of ipomeamarone during pathogen-host interactions. These results indicate that CfErp3 regulates C. fimbriata growth and pathogenicity as well as the production of ipomeamarone in sweetpotato by controlling endocytosis, oxidative homeostasis, and responses to cell wall and osmotic stresses.


Subject(s)
Ascomycota , Sesquiterpenes , Virulence/genetics , Ceratocystis , Saccharomyces cerevisiae
4.
Microorganisms ; 11(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38004677

ABSTRACT

Ceratocystis fimbriata (C. fimbriata) is a notorious pathogenic fungus that causes sweet potato black rot disease. The APSES transcription factor Swi6 in fungi is located downstream of the cell wall integrity (CWI)-mitogen-activated protein kinase (MAPK) signaling pathway and has been identified to be involved in cell wall integrity and virulence in several filamentous pathogenic fungi. However, the specific mechanisms by which Swi6 regulates the growth and pathogenicity of plant pathogenic fungi remain elusive. In this study, the SWI6 deletion mutants and complemented strains of C. fimbriata were generated. Deletion of Swi6 in C. fimbriata resulted in aberrant growth patterns. Pathogenicity assays on sweet potato storage roots revealed a significant decrease in virulence in the mutant. Non-targeted metabolomic analysis using LC-MS identified a total of 692 potential differentially accumulated metabolites (PDAMs) in the ∆Cfswi6 mutant compared to the wild type, and the results of KEGG enrichment analysis demonstrated significant enrichment of PDAMs within various metabolic pathways, including amino acid metabolism, lipid metabolism, nucleotide metabolism, GPI-anchored protein synthesis, and ABC transporter metabolism. These metabolic pathways were believed to play a crucial role in mediating the growth and pathogenicity of C. fimbriata through the regulation of CWI. Firstly, the deletion of the SWI6 gene led to abnormal amino acid and lipid metabolism, potentially exacerbating energy storage imbalance. Secondly, significant enrichment of metabolites related to GPI-anchored protein biosynthesis implied compromised cell wall integrity. Lastly, disruption of ABC transport protein metabolism may hinder intracellular transmembrane transport. Importantly, this study represents the first investigation into the potential regulatory mechanisms of SWI6 in plant filamentous pathogenic fungi from a metabolic perspective. The findings provide novel insights into the role of SWI6 in the growth and virulence of C. fimbriata, highlighting its potential as a target for controlling this pathogen.

5.
Life (Basel) ; 13(8)2023 Aug 06.
Article in English | MEDLINE | ID: mdl-37629552

ABSTRACT

With the increasing demand for medicinal plants and the increasing shortage of resources, improving the quality and yield of medicinal plants and making more effective use of medicinal plants has become an urgent problem to be solved. During the growth of medicinal plants, various adversities can lead to nutrient loss and yield decline. Using traditional chemical pesticides to control the stress resistance of plants will cause serious pollution to the environment and even endanger human health. Therefore, it is necessary to find suitable pesticide substitutes from natural ingredients. As an important part of the microecology of medicinal plants, endophytes can promote the growth of medicinal plants, improve the stress tolerance of hosts, and promote the accumulation of active components of hosts. Endophytes have a more positive and direct impact on the host and can metabolize rich medicinal ingredients, so researchers pay attention to them. This paper reviews the research in the past five years, aiming to provide ideas for improving the quality of medicinal plants, developing more microbial resources, exploring more medicinal natural products, and providing help for the development of research on medicinal plants and endophytes.

6.
Virulence ; 14(1): 2223394, 2023 12.
Article in English | MEDLINE | ID: mdl-37332205

ABSTRACT

As a member of the pattern recognition receptors (PRRs) involving in the innate immune system, Toll-like receptors (TLRs) can sense a wide range of microbial pathogens and combat infections by producing antimicrobial products, inflammatory cytokines, and chemokines. All TLRs, with the exception of TLR3, activate a signalling cascade via the myeloid differentiation primary response gene 88 (MyD88). Therefore, the activation of MyD88-dependent signalling pathway must be finely controlled. Herein, we identified that cyclin-dependent kinase 5 (CDK5) negatively regulated TLR-MyD88 signalling pathway by targeting MyD88. Overexpression of CDK5 reduced the production of interferons (IFNs), while a deficiency in CDK5 increased the expression of IFNs in response to vesicular stomatitis virus (VSV) infection. Mechanistically, CDK5 suppressed the formation of MyD88 homodimers, resulting in the attenuated production of IFNs induced by VSV infection. Surprisingly, its kinase activity does not play a role in this process. Therefore, CDK5 can act as an internal regulator to prevent excessive production of IFNs by restricting TLR-MyD88-induced activation of antiviral innate immunity in A549 cells.


Subject(s)
Myeloid Differentiation Factor 88 , Virus Diseases , Adaptor Proteins, Signal Transducing/metabolism , Cell Differentiation , Cyclin-Dependent Kinase 5/metabolism , Immunity, Innate , Myeloid Differentiation Factor 88/genetics , Toll-Like Receptors , Virus Diseases/immunology
7.
Sci Rep ; 13(1): 8981, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37268681

ABSTRACT

One of the primary tasks for effective disaster relief after a catastrophic earthquake is robust communication. In this paper, we propose a simple logistic method based on two-parameter sets of geology and building structure for the failure prediction of the base stations in post-earthquake. Using the post-earthquake base station data in Sichuan, China, the prediction results are 96.7% and 90% for the two-parameter sets and all parameter sets, respectively, and 93.3% for the neural network method sets. The results show that the two-parameter method outweighs the whole parameter set logistic method and the neural network prediction and can effectively improve the accuracy of the prediction. The weight parameters of two-parameter set by the actual field data significantly show that the failure of base stations after earthquake is mainly due to the geological differences where the base stations are located. It can be envisioned that if the geological distribution between the earthquake source and the base station is parameterized, the multi-parameter sets logistic method can not only effectively solve the failure prediction after earthquakes and the evaluation of communication base stations under complex conditions, but also provide site selection evaluation for the construction of civil buildings and power grid towers in earthquake-prone areas.

8.
Nutrients ; 15(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37242265

ABSTRACT

Research background and Objectives: Age is an independent risk factor for cardiovascular disease (CVD), but CVD risk factors are preventable, and lack of awareness of its risk factors is a contributing factor to CVDs. Middle-aged people may be more likely to engage in unhealthy lifestyle behaviours which can increase the risk of CVD. Health self-assessment is crucial for early detection and management of health issues and early lifestyle intervention for better personalised health management. This study aims to determine the self-assessment of INTERHEART risk classification among the middle-aged community in Malaysia. Method: Local community members aged 40-60 years and who are currently residing in Malaysia were recruited via non-randomised sampling. Sociodemographic characteristics and dietary pattern related to salt, fibre, fat (deep fried/snacks), poultry/meat intakes, and other cardiovascular risk factors (waist-hip ratio, medical history related to diabetes/hypertension, history/exposure of tobacco use, psychosocial status, and level of physical activity) were assessed; INTERHEART risk scores were then computed and stratified into low, medium and high risks. Results: Approximately 45% (n = 273/602) of middle-aged respondents in Malaysia are at moderate-to-high risk of cardiovascular events, with men being more likely to develop CVD compared to women. The results of the survey indicated that poultry/meat intake (61%), physical inactivity (59%), and second-hand smoke (SHS) exposure (54%) are the most prevalent risk factors among the respondents. One-third of the respondents consumed excessive salty food and deep fried foods/snacks/fast food, and only one-third of them consumed vegetables/fruits at a recommended level. It is worrying that about a quarter of the respondents felt several periodical/permanent stresses and even felt sad/blue/depressed for two weeks or more in a row. Males, labour workers, and those with lower educational levels are more likely to develop CVD events. Conclusions: This study found that 45% of the middle-aged respondents were having moderate-to-high risk for cardiovascular events with multiple risk factors related to unhealthy lifestyle habits and environmental factors. In addition to non-modifiable factors such as gender and age, sociodemographic factors, i.e., educational level and occupation, are equally important factors to determine CVD risk. Overall, the findings of this study emphasize the clinical relevance of assessing multiple factors in the determination of CVD risks for early prevention and management of cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Self-Assessment , Male , Middle Aged , Humans , Female , Malaysia/epidemiology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/prevention & control , Risk Factors , Fruit , Risk Assessment
9.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-971130

ABSTRACT

OBJECTIVE@#To establish an intestinal organoid model that mimic acute graft versus host disease (aGVHD) caused intestinal injuries by using aGVHD murine model serum and organoid culture system, and explore the changes of aGVHD intestine in vitro by advantage of organoid technology.@*METHODS@#20-22 g female C57BL/6 mice and 20-22 g female BALB/c mice were used as donors and recipients for bone marrow transplantation, respectively. Within 4-6 h after receiving a lethal dose (8.0 Gy) of γ ray total body irradiation, a total of 0.25 ml of murine derived bone marrow cells (1×107/mice, n=20) and spleen nucleated cells (5×106/mice, n=20) was infused to establish a mouse model of aGVHD (n=20). The aGVHD mice were anesthetized at the 7th day after transplantation, and the veinal blood was harvested by removing the eyeballs, and the serum was collected by centrifugation. The small intestinal crypts of healthy C57BL/6 mice were harvested and cultivated in 3D culture system that maintaining the growth and proliferation of intestinal stem cells in vitro. In our experiment, 5%, 10%, 20% proportions of aGVHD serum were respectively added into the organoid culture system for 3 days. The formation of small intestinal organoids were observed under an inverted microscope and the morphological characteristics of intestinal organoids in each groups were analyzed. For further evaluation, the aGVHD intestinal organoids were harvested and their pathological changes were observed. Combined with HE staining, intestinal organ morphology evaluation was performed. Combined with Alcian Blue staining, the secretion function of aGVHD intestinal organoids was observed. The distribution and changes of Lgr5+ and Clu+ intestinal stem cells in intestinal organoids were analyzed under the conditions of 5%, 10% and 20% serum concentrations by immunohistochemical stainings.@*RESULTS@#The results of HE staining showed that the integrity of intestinal organoids in the 5% concentration serum group was better than that in the 10% and 20% groups. The 5% concentration serum group showed the highest number of organoids, the highest germination rate and the lowest pathological score among experimental groups, while the 20% group exhibited severe morphological destruction and almost no germination was observed, and the pathological score was the highest among all groups(t=3.668, 4.334,5.309,P<0.05). The results of Alican blue staining showed that the secretion function of intestinal organoids in serum culture of aGVHD in the 20% group was weaker than that of the 5% group and 10% of the organoids, and there was almost no goblet cells, and mucus was stainned in the 20% aGVHD serum group. The immunohistochemical results showed that the number of Lgr5+ cells of intestinal organoids in the 5% group was more than that of the intestinal organoids in the 10% aGVHD serum group and 20% aGVHD serum group. Almost no Clu+ cells were observed in the 5% group. The Lgr5+ cells in the 20% group were seriously injuried and can not be observed. The proportion of Clu+ cells in the 20% group significantly increased.@*CONCLUSION@#The concentration of aGVHD serum in the culture system can affect the number and secretion function of intestinal organoids as well as the number of intestinal stem cells in organoids. The higher the serum concentration, the greater the risk of organoid injury, which reveal the characteristics of the formation and functional change of aGVHD intestinal organoids, and provide a novel tool for the study of intestinal injury in aGVHD.


Subject(s)
Mice , Female , Animals , Mice, Inbred C57BL , Bone Marrow Transplantation , Graft vs Host Disease , Stem Cells , Organoids
10.
Mol Ther Oncolytics ; 26: 314-329, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36090477

ABSTRACT

Glioma is the most common primary malignant intracranial tumor. Owing to highly aggressive invasiveness and metastatic properties, the prognosis of this disease remains poor even with surgery, radiotherapy, and chemotherapy. Rutin is a glycoside natural flavonoid that modulates microglia inflammatory profile and improves anti-glioma activity. Here, a glycoside flavonoid was extracted and named purple sweet potato delphinidin-3-rutin (PSPD3R). In an experiment using the subcutaneous xenograft model of human glioblastoma (GBM) and alamar blue assay, we found that PSPD3R suppressed the glioma proliferation both in vitro and in vivo. Flow cytometry assay and transmission electron microscopy observation revealed that PSPD3R stimulated glioma cell autophagy and apoptosis. High-throughput microRNA (miRNA) sequencing showed that PSPD3R substantially affected the miRNA expression of U251 cells. Acridine orange staining and immunoblotting indicated that PSPD3R regulated autophagy via Akt/Creb/miR-20b-5p in glioma cells. Luciferase reporter assays showed that autophagy-related gene 7 (Atg7) mRNA was the target gene of miR-20b-5p. The downregulation of miR-20b-5p inhibited glioma proliferation in vivo. In summary, PSPD3R regulated autophagy in glioma via the Akt/Creb/miR-20b-5p/Atg7 axis. This work unraveled the molecular mechanism of PSPD3R-induced autophagy in glioma and revealed its potential as a therapeutic agent for glioma treatment.

11.
Int J Biol Macromol ; 214: 203-211, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35714864

ABSTRACT

Three signal peptides from α-mating factor (α-MF), inulinase (INU) and native levansucrase (LS) were compared for secretion efficiency of Bacillus subtilis levansucrase SacB-T305A in Pichia pastoris GS115. The first complete secretion of bacterial levansucrase in yeasts under methanol induction was achieved while using α-MF signal. The secreted recombinant Lev(α-MF) proved to be glycosylated by combination of NanoLC-MS/MS and Endo H digestion. Interestingly, glycosylation not only improved significantly the polymerase thermostability, but also reversed the products profiles to favor synthesis of high molecular weight (HMW) levan which accounted for approximately 73 % to total levan-type polysaccharides. It indicated for the first time that the glycosylation of recombinant B. subtilis levansucrase affected significantly the products molecular weight distribution. It also provided a promising enzymatic way to effectively product HMW levan from sucrose resources.


Subject(s)
Bacillus subtilis , Hexosyltransferases , Bacillus subtilis/genetics , Fructans/chemistry , Hexosyltransferases/chemistry , Hexosyltransferases/genetics , Molecular Weight , Pichia/genetics , Saccharomycetales , Tandem Mass Spectrometry
12.
Appl Radiat Isot ; 182: 110127, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35176611

ABSTRACT

The results of 226Ra activity concentration measurements in 50 soil and groundwater samples in Ninh Son region, Vietnam were evaluated in the present study. Average activity concentration in the soils was significantly higher than the worldwide average concentration in soils published by UNSCEAR, 2008. 90% of groundwater samples had concentrations of 226Ra that were higher than the USEPA drinking water standard. The results showed that there was a linear correlation between the 226Ra radioactivity in the soils and the concentration of 226Ra in the groundwater samples. The procedure for removal of 226Ra from soil and groundwater samples was built upon the chemistry behavior of radium. 226Ra in contaminated groundwater samples was removed by using MnO2 fiber. The removal efficiency of 226Ra reached ∼ 91% for the groundwater samples and ∼ 70% for the soil samples. Chemical removal of 226Ra from soils was investigated using a three-step extraction procedure (Easily leachable and exchangeable, Acid-reducible, and Oxidisable-organic). A moderate mobility of 226Ra (22-52%) was noted and mainly found in acid-reducible fractions, which suggests that 226Ra is mainly bound to Fe/Mn oxides and hydroxides. A multiple regression indicates that the 226Ra removal efficiency appears to be significantly dependent on Fe/Mn and organic matter content.


Subject(s)
Groundwater/chemistry , Radium/analysis , Soil Pollutants, Radioactive/analysis , Soil/chemistry , Water Pollutants, Radioactive/analysis , Water Purification/methods , Hydrogen-Ion Concentration , Magnesium Oxide , Vietnam , Water Supply
13.
Acta Pharmaceutica Sinica ; (12): 2115-2119, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-936561

ABSTRACT

The secondary metabolites from the dandelion-derived Epicoccum sorghinum 1-2 were isolated by silica gel and Sephadex gel column chromatography, and semi-preparative high performance liquid chromatography (HPLC). Their structures were identified by comprehensive NMR and MS methods. Their antibacterial activities were determined by filter paper method. Finally, seven compounds were isolated and identified from the fermentation product of E. sorghinum 1-2, including (4R*,5R*,6S*)-4,5-dihydroxy-6-(6'-methylsalicyloxy)-2-methoxymethyl-2-cyclohexen-l-one (1), (4R*,5R*,6S*)-4,5-dihydroxy-6-(6′-methylsalicyloxy)-2-methyl-2-cyclohexen-1-one (2), (4R,5R,6S)-4,5-dihydroxy-6-(6'-methylsalicyloxy)-2-hydroxymethyl-2-cyclohexen-1-one (3), (-)-gabosine E (4), theobroxide (5), 3-chlorogentisyl alcohol (6), and 3-hydroxybenzyl alcohol (7), of which 1-5 are epoxydons, and 6 and 7 are phenolics. Compounds 1 and 2 are new structures reported for the first time. Compound 6 showed significant antibacterial activity against Staphylococcus aureus.

15.
J Agric Food Chem ; 69(21): 5882-5886, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34028273

ABSTRACT

The diastereoselectivity of adducts in the addition reaction via the Felkin-Anh model is affected significantly by the steric effect of bulky groups. However, the influence of steric alkyl chain length has not been studied for the diastereoselectivity. In this work, we present a new strategy for the racemic synthesis of ß-methyl alcohols to obtain various diastereomer ratios using the Felkin-Anh model. The addition of alkyl Grignard reagents to α-methyl aldehydes afforded diastereomer ratios of threo/erythro ≈ 2:1, while the reduction in structurally related ketones using LiAlH4 afforded ratios of threo/erythro ≈ 1:1. The experimental data showed no effect of alkyl chain length on either side on the stereoselectivity of adducts. All synthesized analogues were evaluated for attractiveness to Rhynchophorus ferrugineus weevils in the field. Five novel derivatives, including two alcohols and three ketones, were found to attract weevils in the field trials. Among them, 3-methyldecan-4-one (5b) and 4-methyldecan-5-ol (11a) were found to be the most attractive to the insects.


Subject(s)
Weevils , Alcohols , Animals , Ketones , Methanol
16.
J Environ Manage ; 271: 111001, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32778287

ABSTRACT

In topsoils, the activity concentrations of natural radionuclides (hereafter NRs) increase due to the addition of NRs from fertilizers, irrigation water, and air dust pollution. On the other hand, various physical-chemical and environmental processes such as radioactive decay, volatilization, leaching, erosion, and plant uptake were responsible for the decrease of the activity concentrations of NRs in the topsoils. In this study, behaviours of 40K, 210Pb, 226Ra, 238U, and 232Th in topsoils were modelled by the CEMC soil model and the HYDRUS-1D model. An exponential equation was proposed for estimating the accumulation rates of these radionuclides in the topsoils. Long-term accumulation of radionuclides was assessed for water spinach (Ipomoea Aquatica Forssk.) soil (hereafter VES) and rice (Oryza sativa L.) soil (hereafter RIS). We found that the current agricultural practices caused the increase of 40K activity concentration in the water spinach soil, and 40K, 210Pb, 226Ra, and 232Th activity concentrations in the rice soil. The accumulation rates of radionuclides were in the order 238U < 232Th < 226Ra < 210Pb < 40K. 25 years of cultivation with water spinach can increase/decrease + (165 ± 6) Bq of 40K, - (8.2 ± 0.7) Bq of 210Pb, - (4.3 ± 0.2) Bq of 226Ra, - (7 0.3 ± 0.3) Bq of 238U, and - (1.8 ± 0.1) Bq of 232Th in 1 kg soil. For rice cultivation, these values are + (1004 ± 39), + (3.3 ± 0.2), + (3.0 ± 0.2), - (5.1 ± 0.3), (2.2 ± 0.1) Bq kg-1 for 40K, 210Pb, 226Ra, 238U, and 232Th, respectively.


Subject(s)
Ipomoea , Oryza , Radiation Monitoring , Soil Pollutants, Radioactive/analysis , Lead , Radioisotopes/analysis , Spinacia oleracea , Vietnam , Water
17.
Environ Sci Pollut Res Int ; 27(25): 31812-31826, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32504433

ABSTRACT

Groundwater is a major source of drinking water and agricultural water in some regions of the world. However, it contains a high level of 226Ra that is potentially hazardous to human health and the environment. Normally, the activity concentration of 226Ra in groundwater is determined to assess the quality of groundwater that can be used as drinking water. There are few studies on the accumulation of 226Ra in the agricultural soil due to irrigation with groundwater. In this study, levels of 226Ra were determined on over 60 groundwater samples collected from the public water supply wells in Phu Yen province, Vietnam. Besides assessment of the health risks to population due to drinking groundwater samples, the impact of groundwater irrigation to the maize field in the study area was studied. For this purpose, two chemical fate models were applied and the comparison of their results was performed. Based on the model assessments, we predicted that the present agricultural practices increased the 226Ra activity concentration in the maize soil, and the level of 226Ra activity concentration in the topsoil can exceed the recommended level at 11.4 years of the present agricultural practices on the maize soil.


Subject(s)
Groundwater , Water Pollutants, Chemical/analysis , Agricultural Irrigation , Environmental Monitoring , Humans , Soil , Vietnam , Water Supply , Zea mays
18.
Front Cell Dev Biol ; 8: 300, 2020.
Article in English | MEDLINE | ID: mdl-32457902

ABSTRACT

Animals have developed numerous strategies to contend with environmental pressures. We observed that the same adaptation strategy may be used repeatedly by one species in response to a certain environmental challenge. The ladybird Harmonia axyridis displays thermal phenotypic plasticity at different developmental stages. It is unknown whether these superficially similar temperature-induced specializations share similar physiological mechanisms. We performed various experiments to clarify the differences and similarities between these processes. We examined changes in the numbers and sizes of melanic spots in pupae and adults, and confirmed similar patterns for both. The dopamine pathway controls pigmentation levels at both developmental stages of H. axyridis. However, the aspartate-ß-alanine pathway controls spot size and number only in the pupae. An upstream regulation analysis revealed the roles of Hox genes and elytral veins in pupal and adult spot formation. Both the pupae and the adults exhibited similar morphological responses to temperatures. However, they occurred in different body parts and were regulated by different pathways. These phenotypic adaptations are indicative of an effective thermoregulatory system in H. axyridis and explains how insects contend with certain environmental pressure based on various control mechanisms.

19.
Chinese Journal of Orthopaedics ; (12): 1461-1468, 2020.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-869097

ABSTRACT

Objective:To estimate the burden of hip fractures and related factors among the Chinese middle-aged and elderly population.Methods:Based on the data of China Health and Retirement Longitudinal Study (CHARLS) in 2015, the burden of hip fractures among Chinese middle-aged and elderly population was evaluated as the years lived with disability (YLD) rate. The relationship between gender, age (45-49, 50-59, 60-69 and ≥70 years old), educational level (no education, elementary school, junior high school, high school and above), region (urban, rural), gross domestic production (GDP) per capita (low, medium and high) and geographic area (northern, eastern, south-central, northwest and southwest regions) and the YLD rate of hip fractures were analyzed, respectively.Results:Excluding items with missing basic information and hip fracture data, a total of 17,830 subjects (8,405 males and 9,425 females) were included in the study with average age 61.6±9.8 years (range 45 to 105 years). The average age in male was 61.9±9.6 years, and that in female was 61.2±10.1 years. The prevalence of hip fractures was 2.3% (410/17,830). The total YLD rate was [694/100,000 (95% Uncertainty Interval ( UI): 462/100,000, 989/100,000)]. The YLD rates were similar between male [693/100,000 (95% UI: 461/100,000, 988/100,000)] and female [696/100,000 (95% UI: 463/100,000, 992/100,000)] subgroups. The YLD rate of hip fractures was increasing with age, which reached at maximum of 1,155/100,000 (95% UI: 769/100,000, 1,646/100,000) for participants aged 70 years or above. The rate was gradually decreased with the upgrade of the educational level. The participants with high school education and above reached the lowest of 434/100,000 (95% UI: 289/100,000, 619/100,000). In addition, the YLD rate of hip fractures in rural areas [721/100,000 (95% UI: 480/100,000, 1,027/100,000)] was higher than that in urban areas [650/100,000 (95% UI: 433/100,000, 926/100,000)]. The YLD rate in areas with higher GDP per capita [545/100,000 (95% UI: 363/100,000, 777/100,000)] was lower than that in areas with lower GDP per capita [761/100,000 (95% UI: 506/100,000, 1,084/100,000)]. Moreover, the participants living in the Northwest region were with the highest YLD rate of hip fractures [1,056/100,000 (95% UI: 703/100,000, 1,506/100,000)], followed by the Southwest region [887/100,000 (95% UI: 590/ 100,000, 1,264/100,000)] and the Northeast region [317/100,000 (95% UI: 211/100,000, 452/100,000)]. Conclusion:Hip fractures exerted heavy burdens on the Chinese middle-aged and elderly population. The YLD rate of hip fractures varied according to geographical regions, greater age, rural areas, low educational levels and low GDP per capita. These related factors could affect the disease burden of hip fractures in China.

20.
Biopolymers ; 110(7): e23272, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30897210

ABSTRACT

Oxaliplatin (OXA) was coupled to PEGylated polyamidoamine dendrimers of fourth generation (G4-PEG@OXA) in the comparison to PEGylated ones of odd generation (G3.5-PEG@OXA). Proton nuclear magnetic resonance and Fourier-transform infrared spectroscopy were used to confirm the successful incorporation of OXA as well as the synthesis of carrier systems. Both two types of carrier systems exhibited in sphere nanoparticle shape with size of less than 100 nm that was in the range being able to cause toxicity on cancer cells. The average drug loading efficiency (DLE) of G4-PEG@OXA was obtained at 84.63% that was higher than DLE of G3.5-PEG of 75.69%. The release kinetic of G4-PEG@OXA and G3.5-PEG@OXA did not show any burst release phenomenon while free OXA was released over 40% at the first hour. The sustainable release of OXA was achieved when it was encapsulated in these carriers, but the G4 generation liberated OXA (3.4%-6.4%) slower than G3.5 one (11.9%-22.8%). The in vitro cytotoxicities of G4-PEG@OXA were evaluated in HeLa cell lines using resazurin assay and live/dead staining test. Although the free OXA showed a rather moderate killing ability, the G4-PEG@OXA still displayed the low viability of HeLa that was better to the result of G3.5-PEG@OXA due to released OXA amount. The benefit of this system was to overcome the burst release phenomenon to minimize OXA toxicity without compromising its efficiency.


Subject(s)
Antineoplastic Agents/pharmacology , Delayed-Action Preparations/chemical synthesis , Dendrimers/chemical synthesis , Drug Carriers/chemical synthesis , Nanoparticles/chemistry , Oxaliplatin/pharmacology , Antineoplastic Agents/chemistry , Cell Survival/drug effects , Drug Compounding/methods , Drug Liberation , HeLa Cells , Humans , Kinetics , Nanoparticles/ultrastructure , Oxaliplatin/chemistry , Particle Size , Polyamines/chemistry , Polyethylene Glycols/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...