Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Mar Environ Res ; 191: 106160, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37678099

ABSTRACT

BACKGROUND AND AIMS: Long distance dispersal (LDD) contributes to the replenishment and recovery of tropical seagrass habitats exposed to disturbance, such as cyclones and infrastructure development. However, our current knowledge regarding the physical attributes of seagrass fragments that influence LDD predominantly stems from temperate species and regions. The goal of this paper is to measure seagrass fragment density and viability in two tropical species, assessing various factors influencing their distribution. METHODS: We measured the density and viability of floating seagrass fragments for two tropical seagrass species (Zostera muelleri and Halodule uninervis) in two coastal seagrass meadows in the central Great Barrier Reef World Heritage Area, Australia. We assessed the effect of wind speed, wind direction, seagrass growing/senescent season, seagrass meadow density, meadow location and dugong foraging intensity on fragment density. We also measured seagrass fragment structure and fragment viability; i.e., potential to establish into a new plant. KEY RESULTS: We found that seagrass meadow density, season, wind direction and wind speed influenced total fragment density, while season and wind speed influenced the density of viable fragments. Dugong foraging intensity did not influence fragment density. Our results indicate that wave action from winds combined with high seagrass meadow density increases seagrass fragment creation, and that more fragments are produced during the growing than the senescent season. Seagrass fragments classified as viable for Z. muelleri and H. uninervis had significantly more shoots and leaves than non-viable fragments. We collected 0.63 (±0.08 SE) floating viable fragments 100 m-2 in the growing season, and 0.13 (±0.03 SE) viable fragments 100 m-2 in the senescent season. Over a third (38%) of all fragments collected were viable. CONCLUSION: There is likely to be a large number of viable seagrass fragments available for long distance dispersal. This study's outputs can inform dispersal and connectivity models that are used to direct seagrass ecosystem management and conservation strategies.


Subject(s)
Alismatales , Dugong , Zosteraceae , Animals , Ecosystem , Australia
2.
Arch Virol ; 168(9): 225, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37561217

ABSTRACT

Turnip yellows virus (TuYV; family Solemoviridae, genus Polerovirus, species Turnip yellows virus) is a genetically diverse virus that infects a broad range of plant species across the world. Due to its global economic significance, most attention has been given to the impact of TuYV on canola (syn. oilseed rape; Brassica napus). In Australia, a major canola-exporting country, TuYV isolates are highly diverse, with the most variation concentrated in open reading frame 5 (ORF 5), which encodes the readthrough domain (P5) component of the readthrough protein (P3P5), which plays an important role in host adaptation and aphid transmission. When analysing ORF 5, Australian TuYV isolates form three phylogenetic groups with just 45 to 49% amino acid sequence identity: variants P5-I, P5-II, and P5-III. Despite the possible implications for TuYV epidemiology and management, research examining phenotypic differences between TuYV variants is scarce. This study was designed to test the hypothesis that three TuYV isolates, representing each of the Australian P5 variants, differ phenotypically. In particular, the host range, vector species, transmissibility, and virulence of isolates 5414 (P5-I5414), 5509 (P5-II5509), and 5594 (P5-III5594) were examined in a series of glasshouse experiments. Only P5-I5414 readily infected faba bean (Vicia faba), only P5-II5509 infected chickpea (Cicer arietinum), and only P5-I5414 and P5-III5594 infected lettuce (Lactuca sativa). Myzus persicae transmitted each isolate, but Brevicoryne brassicae and Lipaphis pseudobrassicae did not. When using individual M. persicae to inoculate canola seedlings, P5-I5414 had significantly higher transmission rates (82%) than P5-II5509 (62%) and P5-III5594 (59%). As indicated by enzyme-linked immunosorbent assay absorbance values, P5-I5414 reached higher virus titers in canola than P5-II5509, which, in turn, reached higher titers than P5-III5594. P5-I5414 was also more virulent in canola than P5-II5509 and P5-III5594, inducing more severe foliar symptoms, stunting, and, in one of two experiments, seed yield loss. Results from this study compared to those of previous studies suggest that analysis of ORF 5 alone is insufficient to assign isolates to coherent strain categories, and further sequencing and phenotyping of field isolates is required.


Subject(s)
Brassica napus , Luteoviridae , Australia , Brassica napus/virology , Host Specificity , Luteoviridae/physiology , Phylogeny , Plant Diseases/virology , Virulence
3.
Arch Virol ; 168(1): 20, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36593418

ABSTRACT

Soybean dwarf virus (SbDV; family Tombusviridae, genus Luteovirus, species Soybean dwarf virus) can cause damaging disease epidemics in cultivated plants of the family Fabaceae. The biological characteristics of SbDV isolate WA-8, including its vector species, host range, and impact on Australian grain legume cultivars, were investigated in a series of glasshouse experiments. Isolate WA-8 was classified as the YP strain, as it was transmitted by Acyrthosiphon pisum (pea aphid) and Myzus persicae (green peach aphid) and infected known strain indicator species. Of the 18 pasture legume species inoculated with SbDV, 12 were SbDV hosts, including eight that had not been identified previously as hosts. When inoculated with SbDV, field pea (Pisum sativum), faba bean (Vicia faba), lentil (Lens culinaris), and narrow-leafed lupin cv. Jurien were the most susceptible (70 to 100% plant infection rates), and albus lupin (Lupinus albus), chickpea (Cicer arietinum), and narrow-leafed lupin cv. Mandelup were less susceptible (20 to 70%). Over the course of three experiments, chickpea was the most sensitive to infection, with a > 97% reduction in dry above-ground biomass (AGB) and a 100% reduction in seed yield. Field pea cv. Gunyah, faba bean, and lentil were also sensitive, with a 36 to 61% reduction in AGB. Field pea cv. Kaspa was relatively tolerant, with no significant reduction in AGB or seed yield. The information generated under glasshouse conditions in this study provides important clues for understanding SbDV epidemiology and suggests that it has the potential to cause damage to Australian grain legume crops in the field, especially if climate change facilitates its spread.


Subject(s)
Cicer , Fabaceae , Luteovirus , Vicia faba , Luteovirus/genetics , Host Specificity , Australia , Vegetables
4.
J Econ Entomol ; 114(6): 2610-2614, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34516635

ABSTRACT

Fall armyworm, Spodoptera frugiperda J.E. Smith (Lepidoptera: Noctuidae), is an economically important pest worldwide and has recently been identified in Australia. Morphological identification of S. frugiperda at early larval stages can be difficult often requiring expert microscopy analysis. Rapid and accurate in-field diagnosis is vital for management decision support and there are no tools currently available for this purpose. In this study, a sensitive, specific, and in-field capable loop-mediated isothermal amplification (LAMP) assay was developed to detect S. frugiperda larvae. A primer set based on a highly conserved region of the S. frugiperda cytochrome oxidase subunit 1 (COX1) gene provided detection within 30 min from both total DNA and crude extractions. The crude extraction technique of crushing 10 mg of S. frugiperda material in 50 µl ddH2O and further diluting the homogenate in ddH2O is rapid, simple, and does not require heat blocks, centrifuges, or special buffers increasing its utility as a field-based technique. The primer set detected as little as 24 pg of S. frugiperda DNA and did not cross-react with any other of the lepidopteran species tested that are easily confused with S. frugiperda in Australia. Therefore, this assay could be used in-field to correctly identify the presence of S. frugiperda and thereby greatly assist with timely management decisions.


Subject(s)
Moths , Zea mays , Animals , Larva/genetics , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Spodoptera/genetics
5.
Virus Res ; 277: 197847, 2020 02.
Article in English | MEDLINE | ID: mdl-31887329

ABSTRACT

Turnip yellows virus (TuYV; family Luteoviridae, genus Polerovirus) is the most economically damaging virus infecting canola (Brassica napus) in the south-west Australian grainbelt. However, the impact of TuYV infection at different growth stages on canola seed yield has not been examined. This information is vital for implementing targeted management strategies. Four glasshouse experiments were conducted to examine seed yield losses incurred by an open-pollinated (ATR Bonito) and hybrid (Hyola® 404RR) canola cultivar when aphid-inoculated with TuYV at GS12 (two leaves unfolded), GS17 (seven leaves unfolded), GS30 (beginning of stem elongation) and GS65 (full flowering). When inoculated at GS12 and GS17, cv. Bonito plants incurred 30 % and 36 % seed yield losses, respectively, compared to healthy plants. Similarly, cv. 404RR incurred 41 % and 26 % seed yield losses at GS12 and GS17, respectively. However, when inoculated at GS30, whilst cv. Bonito plants incurred a 26 % seed yield loss, cv. 404RR incurred no significant loss. Neither cultivar incurred seed yield losses from inoculation at GS65. Additional information was collected from these experiments to improve sampling protocols to enhance TuYV detection, with a molecular and serological technique. When canola plants were at pre-flowering growth stages, TuYV was reliably detected 7-14 days after inoculation (DAI) in the youngest leaf. Once flowering had begun, TuYV was consistently detected 7-14 DAI in petals and flower buds. In contrast, regardless of growth stage, testing the oldest leaf regularly resulted in delayed detection or false negatives. Information generated in this study helps to quantify the value of management strategies targeted at preventing TuYV spread in pre-flowering canola crops and ultimately increase the efficiency of resource use.


Subject(s)
Brassica napus/physiology , Brassica napus/virology , Luteoviridae/pathogenicity , Seeds/virology , Australia , Biomass , Luteoviridae/genetics , Plant Diseases/virology , Plant Leaves/virology
6.
Mycorrhiza ; 29(3): 181-193, 2019 May.
Article in English | MEDLINE | ID: mdl-30895370

ABSTRACT

Mycorrhizal fungi are very diverse, including those that produce truffle-like fruiting bodies. Truffle-like fungi are hypogeous and sequestrate (produced below-ground, with an enclosed hymenophore) and rely on animal consumption, mainly by mammals, for spore dispersal. This dependence links mycophagous mammals to mycorrhizal diversity and, assuming truffle-like fungi are important components of mycorrhizal communities, to plant nutrient cycling and ecosystem health. These links are largely untested as currently little is known about mycorrhizal fungal community structure and its dependence on mycophagous mammals. We quantified the mycorrhizal fungal community in the north-east Australian woodland, including the portion interacting with ten species of mycophagous mammals. The study area is core habitat of an endangered fungal specialist marsupial, Bettongia tropica, and as such provides baseline data on mycorrhizal fungi-mammal interactions in an area with no known mammal declines. We examined the mycorrhizal fungi in root and soil samples via high-throughput sequencing and compared the observed taxa to those dispersed by mycophagous mammals at the same locations. We found that the dominant root-associating ectomycorrhizal fungal taxa (> 90% sequence abundance) included the truffle-like taxa Mesophellia, Hysterangium and Chondrogaster. These same taxa were also present in mycophagous mammalian diets, with Mesophellia often dominating. Altogether, 88% of truffle-like taxa from root samples were shared with the fungal specialist diet and 52% with diets from generalist mammals. Our data suggest that changes in mammal communities, particularly the loss of fungal specialists, could, over time, induce reductions to truffle-like fungal diversity, causing ectomycorrhizal fungal communities to shift with unknown impacts on plant and ecosystem health.


Subject(s)
Feeding Behavior , Forests , Mammals , Mycobiome , Mycorrhizae/classification , Animals , Australia , Biodiversity , Diet/veterinary , Ecosystem , High-Throughput Nucleotide Sequencing , Marsupialia/physiology , Soil Microbiology
7.
J Virol Methods ; 265: 15-21, 2019 03.
Article in English | MEDLINE | ID: mdl-30578895

ABSTRACT

Widespread Turnip yellows virus (TuYV) infection causes severe seed yield and quality losses in rapeseed (Brassica napus) crops grown in broadacre agricultural systems worldwide. Current TuYV detection protocols are expensive and time consuming, and can have poor specificity and sensitivity. Typically, they are used as a diagnostic tool to test already symptomatic plants, limiting their practical value to reactive disease management. To improve diagnostic services so that they provide earlier, cheaper, faster, more specific and sensitive TuYV detection, novel and innovative protocols that utilise new technology are required. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed to detect TuYV in crude and total RNA extractions of leaf material and its principal aphid vector Myzus persicae. The assay was based on a set of six primers, highly sensitive and specific to TuYV, derived from a TuYV isolate originating from the south-west Australian grainbelt. TuYV was readily detected in 1 in 100 dilutions of (i) infected to uninfected leaf material, and (ii) viruliferous to non-viruliferous M. persicae. Furthermore, detection was successful in a majority of aphids stored for at least 8 weeks in various trapping and storage substances, including 30% ethylene glycol, sticky trap glue and 70% ethanol. This RT-LAMP assay protocol enables quicker and cheaper diagnosis for TuYV than currently adopted laboratory-based diagnostic techniques. Ultimately, it has the potential for earlier in-field TuYV detection in combination with aphid trapping surveillance programs.


Subject(s)
Aphids/virology , Brassica napus/virology , Luteoviridae/isolation & purification , Nucleic Acid Amplification Techniques/methods , Plant Diseases/virology , Animals , Costs and Cost Analysis , DNA Primers/genetics , Luteoviridae/genetics , Plant Leaves/virology , Sensitivity and Specificity , Time Factors
8.
Virus Res ; 241: 163-171, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28559099

ABSTRACT

An empirical model was developed to forecast Pea seed-borne mosaic virus (PSbMV) incidence at a critical phase of the annual growing season to predict yield loss in field pea crops sown under Mediterranean-type conditions. The model uses pre-growing season rainfall to calculate an index of aphid abundance in early-August which, in combination with PSbMV infection level in seed sown, is used to forecast virus crop incidence. Using predicted PSbMV crop incidence in early-August and day of sowing, PSbMV transmission from harvested seed was also predicted, albeit less accurately. The model was developed so it provides forecasts before sowing to allow sufficient time to implement control recommendations, such as having representative seed samples tested for PSbMV transmission rate to seedlings, obtaining seed with minimal PSbMV infection or of a PSbMV-resistant cultivar, and implementation of cultural management strategies. The model provides a disease forecast risk indication, taking into account predicted percentage yield loss to PSbMV infection and economic factors involved in field pea production. This disease risk forecast delivers location-specific recommendations regarding PSbMV management to end-users. These recommendations will be delivered directly to end-users via SMS alerts with links to web support that provide information on PSbMV management options. This modelling and decision support system approach would likely be suitable for use in other world regions where field pea is grown in similar Mediterranean-type environments.


Subject(s)
Aphids/virology , Forecasting/methods , Pisum sativum/virology , Potyvirus/growth & development , Agriculture , Animals , Incidence , Information Systems , Mediterranean Region , Models, Biological , Rain , Risk , Seeds/virology
9.
Data Brief ; 12: 251-260, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28462363

ABSTRACT

The data reported here support the manuscript Nuske et al. (2017) [1]. Searches were made for quantitative data on the occurrence of fungi within dietary studies of Australian mammal species. The original location reported in each study was used as the lowest grouping variable within the dataset. To standardise the data and compare dispersal events from populations of different mammal species that might overlap, data from locations were further pooled and averaged across sites if they occurred within 100 km of a random central point. Three locations in Australia contained data on several (>7) mycophagous mammals, all other locations had data on 1-3 mammal species. Within these three locations, the identity of the fungi species was compared between mammal species' diets. A list of all fungi species found in Australian mammalian diets is also provide along with the original reference and fungal synonym names.

10.
Virus Res ; 241: 145-155, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28408208

ABSTRACT

Pea seed-borne mosaic virus (PSbMV) infection causes a serious disease of field pea (Pisum sativum) crops worldwide. The PSbMV transmission efficiencies of five aphid species previously found landing in south-west Australian pea crops in which PSbMV was spreading were studied. With plants of susceptible pea cv. Kaspa, the transmission efficiencies of Aphis craccivora, Myzus persicae, Acyrthosiphon kondoi and Rhopalosiphum padi were 27%, 26%, 6% and 3%, respectively. Lipaphis erysimi did not transmit PSbMV in these experiments. The transmission efficiencies found for M. persicae and A. craccivora resembled earlier findings, but PSbMV vector transmission efficiency data were unavailable for A. kondoi, R. padi and L. erysimi. With plants of partially PSbMV resistant pea cv. PBA Twilight, transmission efficiencies of M. persicae, A. craccivora and R. padi were 16%, 12% and 1%, respectively, reflecting putative partial resistance to aphid inoculation. To examine aphid alighting preferences over time, free-choice assays were conducted with two aphid species representing efficient (M. persicae) and inefficient (R. padi) vector species. For this, alatae were set free on multiple occasions (10-15 repetitions each) amongst PSbMV-infected and mock-inoculated pea or faba bean (Vicia faba) plants. Following release, non-viruliferous R. padi alatae exhibited a general preference for PSbMV-infected pea and faba bean plants after 30min-4h, but preferred mock-inoculated plants after 24h. In contrast, non-viruliferous M. persicae alatae alighted on mock-inoculated pea plants preferentially for up to 48h following their release. With faba bean, M. persicae preferred infected plants at the front of assay cages, but mock-inoculated ones their backs, apparently due to increased levels of natural light there. When preliminary analyses were performed to detect PSbMV-induced changes in the volatile organic compound profiles of pea and faba bean plants, higher numbers of volatiles representing a range of compound groups (such as aldehydes, ketones and esters) were found in the headspaces of PSbMV-infected than of mock-inoculated pea or faba bean plants. This indicates PSbMV induces physiological changes in these hosts which manifest as altered volatile emissions. These alterations could be responsible for the differences in alighting preferences. Information from this study enhances understanding of virus-vector relationships in the PSbMV-pea and faba bean pathosystems.


Subject(s)
Aphids/virology , Insect Vectors/virology , Pisum sativum/virology , Plant Diseases/virology , Potyvirus/physiology , Animals , Australia , Volatile Organic Compounds/metabolism
11.
Plant Dis ; 101(6): 929-940, 2017 Jun.
Article in English | MEDLINE | ID: mdl-30682932

ABSTRACT

Drivers of Pea seed-borne mosaic virus (PSbMV) epidemics in rainfed field pea crops were examined under autumn to spring growing conditions in a Mediterranean-type environment. To collect aphid occurrence and PSbMV epidemic data under a diverse range of conditions, 23 field pea data collection blocks were set up over a 6-year period (2010 to 2015) at five locations in the southwest Australian grain-growing region. PSbMV infection levels in seed sown (0.1 to 13%), time of sowing (22 May to 22 June), and cultivar (Kaspa or PBA Twilight) varied with location and year. Throughout each growing season, rainfall data were collected, leaf and seed samples were tested to monitor PSbMV incidence in the crop and transmission from harvested seed, and sticky traps were used to monitor flying aphid numbers. Winged migrant Acyrthosiphon kondoi, Lipaphis erysimi, Myzus persicae, and Rhopalosiphum padi were identified in green tile traps in 2014 and 2015. However, no aphid colonization of field pea plants ever occurred in the blocks. The deductions made from collection block data illustrated how the magnitude of PSbMV spread prior to flowering is determined by two primary epidemic drivers: (i) PSbMV infection incidence in the seed sown, which defines the magnitude of virus inoculum source for within-crop spread by aphids, and (ii) presowing rainfall that promotes background vegetation growth which, in turn, drives early-season aphid populations and the time of first arrival of their winged migrants to field pea crops. Likely secondary epidemic drivers included wind-mediated PSbMV plant-to-plant contact transmission and time of sowing. PSbMV incidence at flowering time strongly influenced transmission rate from harvested seed to seedlings. The data collected are well suited for development and validation of a forecasting model that informs a Decision Support System for PSbMV control in field pea crops.

12.
Plant Dis ; 100(5): 953-958, 2016 May.
Article in English | MEDLINE | ID: mdl-30686142

ABSTRACT

Pea seed-borne mosaic virus (PSbMV) stability in sap and its contact transmission between field pea plants were investigated in glasshouse experiments. When infective leaf sap was kept at room temperature and inoculated to plants in the absence of abrasive, it was still highly infective after 6 h and low levels of infectivity remained after 30 h. PSbMV was transmitted from infected to healthy plants by direct contact when leaves were rubbed against each other. It was also transmitted when intertwining healthy and PSbMV-infected plants were blown by a fan to simulate wind. When air was blown on plants kept at 14 to 20°C, contact transmission of PSbMV occurred consistently and the extent of transmission was enhanced when plants were dusted with diatomaceous earth prior to blowing. In contrast, when plants were kept at 20 to 30°C, blowing rarely resulted in transmission. No passive contact transmission occurred when healthy and infected plants were allowed to intertwine together. This study demonstrates that PSbMV has the potential to be transmitted by contact when wind-mediated wounding occurs in the field. This may play an important role in the epidemiology of the virus in field pea crops, especially in situations where contact transmission expands initial crop infection foci before aphid arrival.

13.
Plant Dis ; 100(12): 2475-2482, 2016 Dec.
Article in English | MEDLINE | ID: mdl-30686170

ABSTRACT

From 2013 to 2015, incidences of Pea seed-borne mosaic virus (PSbMV) infection were determined in semi-leafless field pea (Pisum sativum) crops and trial plots growing in the Mediterranean-type environment of southwest Australia. PSbMV was found at incidences of 2 to 51% in 9 of 13 crops, 1 to 100% in 20 of 24 cultivar plots, and 1 to 57% in 14 of 21 breeding line plots. Crops and plots of 'PBA Gunyah', 'Kaspa', and 'PBA Twilight' were frequently PSbMV infected but none of PSbMV resistance gene sbm1-carrying 'PBA Wharton' plants were infected. In 2015, 14 new PSbMV isolates obtained from these various sources were sequenced and their partial coat protein (CP) nucleotide sequences analyzed. Sequence identities and phylogenetic comparison with 39 other PSbMV partial CP nucleotide sequences from GenBank demonstrated that at least three PSbMV introductions have occurred to the region, one of which was previously unknown. When plants of 'Greenfeast' and PBA Gunyah pea (which both carry resistance gene sbm2) and PBA Wharton and 'Yarrum' (which carry sbm1) were inoculated with PSbMV pathotype P-2 isolate W1, resistance was overcome in a small proportion of plants of each cultivar, showing that resistance-breaking variants were likely to be present. An improved management effort by pea breeders, advisors, and growers is required to diminish infection of seed stocks, avoid sbm gene resistance being overcome in the field, and mitigate the impact of PSbMV on seed yield and quality. A similar management effort is likely to be needed in field pea production elsewhere in the world.

14.
Evolution ; 54(3): 899-910, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10937263

ABSTRACT

Two sibling species of tephritid fruit fly, Bactrocera tryoni and B. neohumeralis, occur sympatrically throughout the range of B. neohumeralis in Australia. Isolation between the two species appears to be maintained by a difference in mating time: B. tryoni mates at dusk, whereas B. neohumeralis mates during the middle of the day. A morphological difference in humeral callus color also distinguishes the two species. Despite clear phenotypic evidence that B. tryoni and B. neohumeralis are distinct species, genetic differentiation as measured by four markers--nuclear DNA sequences from the white gene and the ribosomal internal transcribed spacer (ITS2), and mitochondrial DNA sequences from the cytochrome b (cytb) and cytochrome oxidase subunit II (COII) genes--is very small. Minor fixed differences occur in the ITS2 sequence, however, in all other cases the two species exhibit a high level of shared polymorphic variation. The close genetic similarity suggests either that speciation has occurred very rapidly and recently in the absence of any mitochondrial DNA sorting or that the sharing of polymorphisms is due to hybridization or introgression. A third species within the tryoni complex, B. aquilonis, is geographically isolated. Bactrocera aquilonis is also genetically very similar, but in this case there is clear differentiation for the mitochondrial loci. The three species form a group of considerable interest for investigation of speciation mechanisms.


Subject(s)
Biological Evolution , Drosophila/genetics , Amino Acid Sequence , Animals , Base Sequence , Cytochrome b Group/genetics , DNA, Mitochondrial/chemistry , Electron Transport Complex IV/genetics , Exons , Eye Color/genetics , Introns , Molecular Sequence Data , Polymorphism, Genetic , RNA, Ribosomal/genetics , Sexual Behavior, Animal , Species Specificity
15.
Evolution ; 54(3): 974-86, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10937270

ABSTRACT

Mechanisms of population differentiation in highly vagile species such as seabirds are poorly understood. Previous studies of marbled murrelets (Brachyramphus marmoratus; Charadriiformes: Alcidae) found significant population genetic structure, but could not determine whether this structure is due to historical vicariance (e.g., due to Pleistocene glaciers), isolation by distance, drift or selection in peripheral populations, or nesting habitat selection. To discriminate among these possibilities, we analyzed sequence variation in nine nuclear introns from 120 marbled murrelets sampled from British Columbia to the western Aleutian Islands. Mismatch distributions indicated that murrelets underwent at least one population expansion during the Pleistocene and probably are not in genetic equilibrium. Maximum-likelihood analysis of allele frequencies suggested that murrelets from "mainland" sites (from the Alaskan Peninsula east) are genetically different from those in the Aleutians and that these two lineages diverged prior to the last glaciation. Analyses of molecular variance, as well as estimates of gene flow derived using coalescent theory, indicate that population genetic structure is best explained by peripheral isolation of murrelets in the Aleutian Islands, rather than by selection associated with different nesting habitats. No isolation-by-distance effects could be detected. Our results are consistent with a rapid expansion of murrelets from a single refugium during the early-mid Pleistocene, subsequent isolation and divergence in two or more refugia during the final Pleistocene glacial advance, and secondary contact following retreat of the ice sheets. Population genetic structure now appears to be maintained by distance effects combined with small populations and a highly fragmented habitat in the Aleutian Islands.


Subject(s)
Birds/genetics , Genetic Variation , Alaska , Animals , Base Sequence , Biological Evolution , Introns , Molecular Sequence Data
17.
Mol Ecol ; 6(11): 1047-58, 1997 Nov.
Article in English | MEDLINE | ID: mdl-9394463

ABSTRACT

Combination of the targeted amplification of nuclear introns and the analysis of single-stranded conformational polymorphisms has the potential to provide an inexpensive, rapid, versatile and sensitive genetic assay for evolutionary studies and conservation. We are developing primers and protocols to analyse nuclear introns in vertebrates, and are testing them in a population genetic study of marbled murrelets Brachyramphus marmoratus. Here we present protocols and results for introns for aldolase B, alpha-enolase, glyceraldehyde-3-phosphate dehydrogenase and lamin A. Results suggest that this approach presents a potentially powerful method for detecting genetic variation within and among local populations and species of animals: (i) a variety of genes can be surveyed, including genes of special interest such as those involved in disease resistance; (ii) assays are rapid and relatively inexpensive; (iii) large numbers of genes can be assayed, enabling accurate estimation of variation in the total genome; (iv) almost any mutation can be detected in the genes amplified; (v) the exact nature of variation can be investigated by sequence analysis if desired; (vi) statistical methods previously developed for proteins and/or sequence data can be used; (vii) protocols can be easily transferred to other species and other laboratories; and (viii) assays can be performed on old or degraded samples, blood or museum skins, so that animals need not be killed. Results of analyses for murrelets support earlier evidence that North American and Asiatic subspecies represent reproductively isolated species, and that genetic differences exist among murrelets from different sites within North America.


Subject(s)
Birds/genetics , Genetic Variation , Introns/genetics , Polymorphism, Single-Stranded Conformational , Amino Acid Sequence , Animals , Base Sequence , Fructose-Bisphosphate Aldolase/genetics , Genetics, Population , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Lamin Type A , Lamins , Molecular Sequence Data , Nuclear Proteins/genetics , Phosphopyruvate Hydratase/genetics
18.
Health Educ Q ; 18(4): 429-43, 1991.
Article in English | MEDLINE | ID: mdl-1757266

ABSTRACT

The creative challenge of health education for chronic illnesses is the translation of theory-based intervention methods into practical strategies that can be organized into a logical series of learning activities to influence changes in environmental, cognitive, or behavioral factors. A case example describing the development and implementation of a comprehensive health-education intervention for the self-management of cystic fibrosis (CF) is presented. The design of intervention strategies began with an assessment of the educational needs for self-management of CF, followed by specification and validation of particular self-management behaviors. Behavioral and learning objectives then were formulated for each of the self-management behaviors. Constructs from social learning theory considered to be important influences on specified self-management behaviors in CF were identified. Taking into consideration the learning needs of the target population and the practical constraints of the system for providing health care, various intervention methods then were devised based on social learning theory. Lastly, the intervention methods chosen were translated into strategies organized into a series of practical learning activities for CF patients and their families. The process described here should prove useful to others who are planning and developing comprehensive health education programs for self-management of chronic illnesses.


Subject(s)
Cystic Fibrosis/rehabilitation , Patient Education as Topic/organization & administration , Program Development , Self Care/methods , Adaptation, Psychological , Adolescent , Child , Child, Preschool , Cystic Fibrosis/psychology , Family/psychology , Humans , Learning , Organizational Objectives , Patient Care Planning/organization & administration , Psychological Theory , Teaching Materials
SELECTION OF CITATIONS
SEARCH DETAIL
...