Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Mar Environ Res ; 169: 105395, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34182306

ABSTRACT

In this study, marine biofilms were cultured in a flow-lane, semi-continuous photobioreactor at different irradiances and flows to evaluate their combined effect on biofilms' phototrophic composition and photosynthetic activity. Taxon richness, evaluated by different microscopy techniques, including transmission and scanning electron microscopy, resulted to be heavily reduced from source communities to mature cultures. The strongest decrease was observed for diatoms, which were overcome by cyanobacteria and green algae over time. Photosynthetic performance was investigated by pulse amplitude modulated fluorescence. Irradiance was the main driver of data distribution of the photosynthetic parameters rel.ETRmax and Ik, while flow rate affected α and ΔF/Fm'. The combination of irradiance and flow rate affected ΔF/Fm' reflecting the photosynthetic performance of the most relatively abundant taxa. Higher ΔF/Fm' was attained when cyanobacteria and green algae were dominating, whilst lower ΔF/Fm' when diatoms occurred in the initial phase of biofilm development.


Subject(s)
Cyanobacteria , Diatoms , Biofilms , Photobioreactors , Photosynthesis
2.
Water Sci Technol ; 82(6): 1142-1154, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33055404

ABSTRACT

Microbial consortia are effective biofilters to treat wastewaters, allowing for resource recovery and water remediation. To reuse and save water in the domestic cycle, we assembled a suspended biofilm, a 'biofilter' to treat dishwasher wastewater. Bacterial monocultures of both photo- and heterotrophs were assembled in an increasingly complex fashion to test their nutrient stripping capacity. This 'biofilter' is the core of an integrated system (Zero Mile System) devoted to reusing and upcycling of reconditioned wastewater, partly in subsequent dishwasher cycles and partly into a vertical garden for plant food cultivation. The biofilter was assembled based on a strain of the photosynthetic, filamentous cyanobacterium Trichormus variabilis, selected to produce an oxygen evolving scaffold, and three heterotrophic aerobic bacterial isolates coming from the dishwasher wastewater itself: Acinetobacter, Exiguobacterium and Pseudomonas spp. The consortium was constructed starting with 16 isolates tested one-to-one with T. variabilis and then selecting the heterotrophic microbes up to a final one-to-three consortium, which included two dominant and a rare component of the wastewater community. This consortium thrives in the wastewater much better than T. variabilis alone, efficiently stripping N and P in short time, a pivotal step for the reuse and saving of water in household appliances.


Subject(s)
Wastewater , Water Purification , Bacteria/genetics , Microbial Consortia , Nutrients
3.
FEMS Microbiol Ecol ; 94(5)2018 05 01.
Article in English | MEDLINE | ID: mdl-29596620

ABSTRACT

Matrix-embedded, surface-attached microbial communities, known as biofilms, profusely colonise industrial cooling water systems, where the availability of nutrients and organic matter favours rapid microbial proliferation and their adhesion to surfaces in the evaporative fill material, heat exchangers, water reservoir and cooling water sections and pipelines. The extensive growth of biofilms can promote micro-biofouling and microbially induced corrosion (MIC) as well as pose health problems associated with the presence of pathogens like Legionella pneumophila. This review examines critically biofilm occurrence in cooling water systems and the main factors potentially affecting biofilm growth, biodiversity and structure. A broad evaluation of the most relevant biofilm monitoring and control strategies currently used or potentially useful in cooling water systems is also provided.


Subject(s)
Biofilms/growth & development , Fresh Water/microbiology , Legionella pneumophila/physiology , Water Microbiology , Water Supply
4.
Plant Physiol Biochem ; 125: 45-51, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29413630

ABSTRACT

This work focused on the potential of Desmodesmus sp. to be employed for wastewater bioremediation and biodiesel production. The green microalga was grown in a culture medium with a phosphorus (P) content of 4.55 mg L-1 simulating an industrial effluent; it was also exposed to a bimetal solution of copper (Cu) and nickel (Ni) for 2 days. P removal was between 94 and 100%. After 2 days of exposure to metals, 94% of Cu and 85% of Ni were removed by Desmodesmus sp. Adsorption tests showed that the green microalga was able to remove up to 90% of Cu and 43% of Ni in less than 30 min. The presence of metals decreased the lipid yield, but biodiesel quality from the biomass obtained from metal exposed samples was higher than that grown without metals. This result revealed that this technology could offer a new alternative solution to environmental pollution and carbon-neutral fuel generation.


Subject(s)
Chlorophyta/growth & development , Copper/metabolism , Lipids/biosynthesis , Microalgae/growth & development , Nickel/metabolism , Phosphorus/metabolism , Biodegradation, Environmental
5.
Biofouling ; 34(10): 1093-1109, 2018 11.
Article in English | MEDLINE | ID: mdl-30663885

ABSTRACT

Biofilms commonly colonise cooling water systems, causing equipment damage and interference with the operational requirements of the systems. In this study, next-generation sequencing (NGS), catalysed reporter deposition fluorescence in situ hybridisation (CARD-FISH), lectin staining and microscopy were used to evaluate temporal dynamics in the diversity and structure of biofilms collected seasonally over one year from an open full-scale cooling tower. Water samples were analysed to evaluate the contribution of the suspended microorganisms to the biofilm composition and structure. Alphaproteobacteria dominated the biofilm communities along with Beta- and Gammaproteobacteria. The phototrophic components were mainly cyanobacteria, diatoms and green algae. Bacterial biodiversity decreased from winter to autumn, concurrently with an increase in cyanobacterial and microalgal richness. Differences in structure, spatial organisation and glycoconjugates were observed among assemblages during the year. Overall, microbial variation appeared to be mostly affected by irradiance and water temperature rather than the source of the communities. Variations in biofilms over seasons should be evaluated to develop specific control strategies.


Subject(s)
Biofilms/growth & development , Chlorophyta/growth & development , Cyanobacteria/growth & development , Diatoms/growth & development , Proteobacteria/growth & development , Seasons , Biodiversity , Cold Temperature , In Situ Hybridization, Fluorescence , Oil and Gas Industry , Surface Properties
6.
Biofouling ; 33(10): 793-806, 2017 11.
Article in English | MEDLINE | ID: mdl-28994320

ABSTRACT

In this study, next generation sequencing and catalyzed reporter deposition fluorescence in situ hybridization, combined with confocal microscopy, were used to provide insights into the biodiversity and structure of biofilms collected from four full-scale European cooling systems. Water samples were also analyzed to evaluate the impact of suspended microbes on biofilm formation. A common core microbiome, containing members of the families Sphingomonadaceae, Comamonadaceae and Hyphomicrobiaceae, was found in all four biofilms, despite the water of each coming from different sources (river and groundwater). This suggests that selection of the pioneer community was influenced by abiotic factors (temperature, pH) and tolerances to biocides. Members of the Sphingomonadaceae were assumed to play a key role in initial biofilm formation. Subsequent biofilm development was driven primarily by light availability, since biofilms were dominated by phototrophs in the two studied 'open' systems. Their interactions with other microbial populations then shaped the structure of the mature biofilm communities analyzed.


Subject(s)
Biodiversity , Biofilms/classification , Microbiota/genetics , Disinfectants/pharmacology , Drug Industry , Groundwater/microbiology , High-Throughput Nucleotide Sequencing , In Situ Hybridization, Fluorescence , Microbial Sensitivity Tests , Microbiota/drug effects , Oil and Gas Industry , Rivers/microbiology
7.
Sci Total Environ ; 601-602: 959-967, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28582741

ABSTRACT

The concentration of metal ions in aqueous media is a major environmental problem due to their persistence and non-biodegradability that poses hazards to the ecosystem and human health. In this study, the effect of Cu and Ni on the growth of two green microalgal strains, Chlorella vulgaris and Desmodesmus sp., was evaluated along with the removal capacity from single metal solutions (12days exposure; metal concentration range: 1.9-11.9mgL-1). Microalgal growth showed to decrease at increasing metal concentrations, but promising metal removal efficiencies were recorded: up to 43% and 39% for Cu by Desmodesmus sp. and C. vulgaris, respectively, with a sorption capacity of 33.4mggDW-1 for Desmodesmus sp. As for Ni, at the concentration of 5.7mgL-1, the removal efficiency reached 32% for C. vulgaris and 39% for Desmodesmus sp. In addition, Desmodesmus sp. growth and metal removal were evaluated employing bimetallic solutions. In these tests, the removal efficiency for Cu was higher than that of Ni for all the mix solutions tested with a maximum of 95%, while Ni-removal reached 90% only for the lowest concentrations tested. Results revealed that the biosorption of both metals reached maximum removal levels within the fourth day of incubation (with metal uptakes of 67mgCugDW-1 and 37mgNigDW-1). Intracellular bioaccumulation of metals in Desmodesmus sp. was evaluated by confocal laser scanning microscopy after DAPI staining of cells exposed or not to Cu during their growth. Imaging suggested that Cu is sequestered in polyphosphate bodies within the cells, as observable also in phosphorus deprived cultures. Our results indicate the potential of employing green microalgae for bioremediation of metal-polluted waters, due to their ability to grow in the presence of high metal concentrations and to remove them efficiently.


Subject(s)
Chlorella vulgaris/metabolism , Chlorophyta/metabolism , Copper/metabolism , Nickel/metabolism , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental , Copper/analysis , Microalgae , Nickel/analysis , Water Pollutants, Chemical/analysis
8.
Biosens Bioelectron ; 80: 154-160, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-26827145

ABSTRACT

The potentiometric E-tongue system was employed for water toxicity estimation in terms of cyanobacterial microcystin toxins (MCs) detection. The data obtained from E-tongue were correlated to the MCs content detected by the standard chromatographic technique UHPLC-DAD (Ultra High Performance Liquid Chromatography with Diode Array Detector), as far as by the colorimetric enzymatic approach. The prediction of MCs released by toxic Microcystis aeruginosa strains was possible with Root Mean Squared Error of Validation (RMSEV) lower or very close to 1µg/L, the provisional guideline value of WHO for MCs content in potable waters. The application of E-tongue system opens up a new perspective offset for fast and inexpensive analysis in the field of environmental monitoring, offering also the possibility to distinguish toxin producing and non-toxic M. aeruginosa strains present in potable water.


Subject(s)
Bacterial Toxins/isolation & purification , Biosensing Techniques , Environmental Monitoring , Marine Toxins/isolation & purification , Microcystins/isolation & purification , Cyanobacteria Toxins , Electronics , Microcystis/isolation & purification , Microcystis/pathogenicity , Water Microbiology
9.
Biofouling ; 25(6): 495-504, 2009.
Article in English | MEDLINE | ID: mdl-19382011

ABSTRACT

Phototrophic biofilm samples from an Italian wastewater treatment plant were studied in microcosm experiments under varying irradiances, temperatures and flow regimes to assess the effects of environmental variables and phototrophic biomass on capsular exopolysaccharides (CPS). The results, obtained from circular dichroism spectroscopy and High Performance Liquid Chromatography, suggest that CPS have a stable spatial conformation and a complex monosaccharide composition. The total amount present was positively correlated with the biomass of cyanobacteria and diatoms, and negatively with the biovolume of green algae. The proportion of uronic acids showed the same correlation with these taxon groups, indicating a potential role of cyanobacteria and diatoms in the removal of residual nutrients and noxious cations in wastewater treatment. While overall biofilm growth was limited by low irradiance, high temperature (30 degrees C) and low flow velocity (25 l h(-1)) yielded the highest phototrophic biomass, the largest amount of CPS produced, and the highest proportion of carboxylic acids present.


Subject(s)
Bacterial Capsules/analysis , Biofilms/growth & development , Phototrophic Processes , Waste Disposal, Fluid/methods , Water Purification/methods , Chlorophyta/growth & development , Chromatography, High Pressure Liquid , Circular Dichroism , Cyanobacteria/growth & development , Diatoms/growth & development , Ecosystem , Italy
SELECTION OF CITATIONS
SEARCH DETAIL