Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Fertil Soils ; 57(7): 881-894, 2021.
Article in English | MEDLINE | ID: mdl-34759437

ABSTRACT

To improve soil health and to aid in climate change mitigation, the quantity of soil organic matter (SOM) should be maintained or increased over the long run. In doing so, not only the total quantity of SOC but also the stability of SOC must be considered. Stability of SOC increases as a function of resistance to microbial decomposition or microbial substrate use efficiency through chemical, biological, and physical mechanisms including humification, hydrophobic moieties, molecular diversity, and formation of macroaggregates. One of the mechanisms that enhance stability confers changes in the distribution of C functional groups of SOM. To better understand and quantify how these changes are influenced by agricultural management practices, we collected 670 pairwise data from the body of literature that has evaluated changes in the distribution of C functional groups of SOM measured by solid-state 13C NMR spectroscopy. The types of agricultural managements discussed herein include (1) fertilization, (2) tillage, (3) crop rotation, (4) grazing, and (5) liming practices. Our meta-analyses show that these practices modify the distribution of C functional groups of SOM. Fertilization practices were associated with increased O-alkyl groups. Tillage resulted in increases in the SOC consisted of aromatic and carbonyl groups. Crop rotations, especially legume-based rotations, were found to increase the proportion of aromatic groups. Although there are fewer publications on tillage and crop rotation than on fertilization practices, the distribution of C functional groups may be more influenced by crop rotation and tillage practices than fertilization management-and should be a focus of future research. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00374-021-01580-2.

2.
Sci Total Environ ; 767: 145107, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33550054

ABSTRACT

Agriculture is an important contributor to N2O emissions - a potent greenhouse gas - with high peaks occurring when soil mineral nitrogen (N) is high (e.g., after mineralization of organic N and N fertilizer application). Nitrogen dynamics in soil and consequently N2O emissions are affected by crop and soil management practices (e.g., crop rotation and tillage), an effect mostly assessed in the literature through comparisons of total N2O emission. Hence, information is scarce on the effect of these management practices on specific N sources affecting N2O emissions (i.e., N fertilizer, soil, above and belowground crop residues) - a knowledge gap explored in this study with the use of 15N tracers. The isotope approach enabled refinement on global N2O budget by directly determining the emission factors (EF) of above and belowground crop residues that vary in chemical composition and comparison with default EF values (e.g., IPCC EFs). Our experiment was conducted over the full-cycle of long-term crop rotations to (i) compare N2O totals and intensity, under no-tillage and conventional tillage, simple and diverse rotation; (ii) partition total N2O emissions into soil, N fertilizer, above and belowground crop residue N sources; (iii) compare the 12-month EF of crop residue against the default values proposed by IPCC (2019). For the tillage effect, annual N2O emissions were from 1.2- to 2.0-times higher on CT than NT soil due to 40% increased soil N derived N2O emission in CT. The diversified crop rotation emitted 1.3-times higher N2O than the simple rotation over the full-cycle of the rotations, but the effect was due to differences in N fertilizer rate between the rotations since emissions were equivalent when scaled by N rate. Finally, our results suggested that default IPCC EF are overestimated for crop residues under CT and NT, simple and diverse rotations as measured EFs never surpassed 0.1%.

SELECTION OF CITATIONS
SEARCH DETAIL
...