Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 22(43): 25136-25145, 2020 Nov 21.
Article in English | MEDLINE | ID: mdl-33118561

ABSTRACT

Efficient and selective hydrolysis of inert peptide bonds is of paramount importance. MOF-808, a metal-organic framework based on Zr6 nodes, can hydrolyze peptide bonds efficiently under biologically relevant conditions. However, the details of the catalyst structure and of the underlying catalytic reaction mechanism are challenging to establish. By means of DFT calculations we first investigate the speciation of the Zr6 nodes and identify the nature of ligands that bind to the Zr6O8H4-x core in aqueous conditions. The core is predicted to strongly prefer a Zr6O8H4 protonation state and to be predominantly decorated by bridging formate ligands, giving Zr6(µ3-O)4(µ3-OH)4(BTC)2(HCOO)6 and Zr6(µ3-O)4(µ3-OH)4(BTC)2(HCOO)5(OH)(H2O) as the most favorable structures at physiological pH. The GlyGly peptide can bind MOF in several different ways, with the preferred structure involving coordination through the terminal carboxylate analogously to the binding mode of formate ligand. The pre-reactive binding mode in which the amide carbonyl oxygen coordinates the metal core lies 7 kcal higher in free energy. The preferred reaction pathway is predicted to have two close-lying transition states, either of which could be the rate-determining step: nucleophilic attack on the amide carbon atom and C-N bond breaking, with calculated relative free energies of 31 and 32 kcal mol-1, respectively. Replacement of formate by water and hydroxide at the Zr6 node is predicted to be possible, but does not appear to play a role in the hydrolysis mechanism.


Subject(s)
Metal-Organic Frameworks/chemistry , Peptides/chemistry , Hydrolysis , Peptides/metabolism , Protein Binding
2.
Chemistry ; 24(40): 10099-10108, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-29797738

ABSTRACT

The effect of the protein environment on the formation and stabilization of an elusive catalytically active polyoxometalate (POM) species, K6 [Hf(α2 -P2 W17 O61 )] (1), is reported. In the co-crystal of hen egg-white lysozyme (HEWL) with 1, the catalytically active monomeric species is observed, originating from the dimeric 1:2 POM form, while it is intrinsically unstable under physiological pH conditions. The protein-assisted dissociation of the dimeric POM was rationalized by means of DFT calculations. The dissociation process is unfavorable in bulk water, but becomes favorable in the protein-POM complex due to the low dielectric response at the protein surface. The crystal structure shows that the monomeric form is stabilized by electrostatic and water-mediated hydrogen bonding interactions with the protein. It interacts at three distinct sites, close to the aspartate-containing hydrolysis sites, demonstrating high selectivity towards peptide bonds containing this residue.

SELECTION OF CITATIONS
SEARCH DETAIL
...