Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1265390, 2023.
Article in English | MEDLINE | ID: mdl-38260909

ABSTRACT

Background: Rifampicin (RIF) is a key first-line drug used to treat tuberculosis, a primarily pulmonary disease caused by Mycobacterium tuberculosis. RIF resistance is caused by mutations in rpoB, at the cost of slower growth and reduced transcription efficiency. Antibiotic resistance to RIF is prevalent despite this fitness cost. Compensatory mutations in rpoABC genes have been shown to alleviate the fitness cost of rpoB:S450L, explaining how RIF resistant strains harbor this mutation can spread so rapidly. Unfortunately, the full set of RIF compensatory mutations is still unknown, particularly those compensating for rarer RIF resistance mutations. Objectives: We performed an association study on a globally representative set of 4,309 whole genome sequenced clinical M. tuberculosis isolates to identify novel putative compensatory mutations, determine the prevalence of known and previously reported putative compensatory mutations, and determine which RIF resistance markers associate with these compensatory mutations. Results and conclusions: Of the 1,079 RIF resistant isolates, 638 carried previously reported putative and high-probability compensatory mutations. Our strict criteria identified 46 additional mutations in rpoABC for which no strong prior evidence of their compensatory role exists. Of these, 35 have previously been reported. As such, our independent corroboration adds to the mounting evidence that these 35 also carry a compensatory role. The remaining 11 are novel putative compensatory markers, reported here for the first time. Six of these 11 novel putative compensatory mutations had two or more mutation events. Most compensatory mutations appear to be specifically compensating for the fitness loss due to rpoB:S450L. However, an outbreak of 22 closely related isolates each carried three rpoB mutations, the rare RIFR markers D435G and L452P and the putative compensatory mutation I1106T. This suggests compensation may require specific combinations of rpoABC mutations. Here, we report only mutations that met our very strict criteria. It is highly likely that many additional rpoABC mutations compensate for rare resistance-causing mutations and therefore did not carry the statistical power to be reported here. These findings aid in the identification of RIF resistant M. tuberculosis strains with restored fitness, which pose a greater risk of causing resistant outbreaks.

2.
Antimicrob Agents Chemother ; 66(6): e0207521, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35532237

ABSTRACT

Point mutations in the rrs gene and the eis promoter are known to confer resistance to the second-line injectable drugs (SLIDs) amikacin (AMK), capreomycin (CAP), and kanamycin (KAN). While mutations in these canonical genes confer the majority of SLID resistance, alternative mechanisms of resistance are not uncommon and threaten effective treatment decisions when using conventional molecular diagnostics. In total, 1,184 clinical Mycobacterium tuberculosis isolates from 7 countries were studied for genomic markers associated with phenotypic resistance. The markers rrs:A1401G and rrs:G1484T were associated with resistance to all three SLIDs, and three known markers in the eis promoter (eis:G-10A, eis:C-12T, and eis:C-14T) were similarly associated with kanamycin resistance (KAN-R). Among 325, 324, and 270 AMK-R, CAP-R, and KAN-R isolates, 274 (84.3%), 250 (77.2%), and 249 (92.3%) harbored canonical mutations, respectively. Thirteen isolates harbored more than one canonical mutation. Canonical mutations did not account for 103 of the phenotypically resistant isolates. A genome-wide association study identified three genes and promoters with mutations that, on aggregate, were associated with unexplained resistance to at least one SLID. Our analysis associated whiB7 5'-untranslated-region mutations with KAN resistance, supporting clinical relevance for this previously demonstrated mechanism of KAN resistance. We also provide evidence for the novel association of CAP resistance with the promoter of the Rv2680-Rv2681 operon, which encodes an exoribonuclease that may influence the binding of CAP to the ribosome. Aggregating mutations by gene can provide additional insight and therefore is recommended for identifying rare mechanisms of resistance when individual mutations carry insufficient statistical power.


Subject(s)
Drug Resistance, Multiple, Bacterial , Mycobacterium tuberculosis , Amikacin/pharmacology , Antitubercular Agents/pharmacology , Capreomycin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Genetic Markers , Genome-Wide Association Study , Kanamycin/pharmacology , Microbial Sensitivity Tests , Mutation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics
3.
Elife ; 92020 10 27.
Article in English | MEDLINE | ID: mdl-33107429

ABSTRACT

This study assembles DNA adenine methylomes for 93 Mycobacterium tuberculosis complex (MTBC) isolates from seven lineages paired with fully-annotated, finished, de novo assembled genomes. Integrative analysis yielded four key results. First, methyltransferase allele-methylome mapping corrected methyltransferase variant effects previously obscured by reference-based variant calling. Second, heterogeneity analysis of partially active methyltransferase alleles revealed that intracellular stochastic methylation generates a mosaic of methylomes within isogenic cultures, which we formalize as 'intercellular mosaic methylation' (IMM). Mutation-driven IMM was nearly ubiquitous in the globally prominent Beijing sublineage. Third, promoter methylation is widespread and associated with differential expression in the ΔhsdM transcriptome, suggesting promoter HsdM-methylation directly influences transcription. Finally, comparative and functional analyses identified 351 sites hypervariable across isolates and numerous putative regulatory interactions. This multi-omic integration revealed features of methylomic variability in clinical isolates and provides a rational basis for hypothesizing the functions of DNA adenine methylation in MTBC physiology and adaptive evolution.


Subject(s)
Adenine/metabolism , DNA Methylation , Epigenome , Genetic Variation , Mycobacterium tuberculosis/genetics , Mutation , Mycobacterium tuberculosis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...