Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1368494, 2024.
Article in English | MEDLINE | ID: mdl-38745948

ABSTRACT

Decidualisation, the process whereby endometrial stromal cells undergo morphological and functional transformation in preparation for trophoblast invasion, is often disrupted in women with polycystic ovary syndrome (PCOS) resulting in complications with pregnancy and/or infertility. The transcription factor Wilms tumour suppressor 1 (WT1) is a key regulator of the decidualization process, which is reduced in patients with PCOS, a complex condition characterized by increased expression of androgen receptor in endometrial cells and high presence of circulating androgens. Using genome-wide chromatin immunoprecipitation approaches on primary human endometrial stromal cells, we identify key genes regulated by WT1 during decidualization, including homeobox transcription factors which are important for regulating cell differentiation. Furthermore, we found that AR in PCOS patients binds to the same DNA regions as WT1 in samples from healthy endometrium, suggesting dysregulation of genes important to decidualisation pathways in PCOS endometrium due to competitive binding between WT1 and AR. Integrating RNA-seq and H3K4me3 and H3K27ac ChIP-seq metadata with our WT1/AR data, we identified a number of key genes involved in immune response and angiogenesis pathways that are dysregulated in PCOS patients. This is likely due to epigenetic alterations at distal enhancer regions allowing AR to recruit cofactors such as MAGEA11, and demonstrates the consequences of AR disruption of WT1 in PCOS endometrium.


Subject(s)
Endometrium , Polycystic Ovary Syndrome , Receptors, Androgen , WT1 Proteins , Humans , Female , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/pathology , Endometrium/metabolism , Endometrium/pathology , WT1 Proteins/metabolism , WT1 Proteins/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Stromal Cells/metabolism , Stromal Cells/pathology , Adult , Regulatory Sequences, Nucleic Acid
2.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38063696

ABSTRACT

Selenium 0 (Se0) is a powerful anti-proliferative agent in cancer research. We investigated the impact of sub-toxic concentrations of Se0 functionalized nanoparticles (SeNPs) on prostate cancer PC-3 cells and determined their intracellular localization and fate. An in-depth characterization of functionalized selenium nanoparticles composition is proposed to certify that no chemical bias relative to synthesis issues might have impacted the study. Selenium is an extremely diluted element in the biological environment and therefore requires high-performance techniques with a very low detection limit and high spatial resolution for intracellular imaging. This was explored with state-of-the-art techniques, but also with cryopreparation to preserve the chemical and structural integrity of the cells for spatially resolved and speciation techniques. Monodisperse solutions of SeNPs capped with bovine serum albumin (BSA) were shown to slow down the migration capacity of aggressive prostate cancer cells compared to polydisperse solutions of SeNPs capped with chitosan. BSA coating could prevent interactions between the reactive surface of the nanoparticles and the plasma membrane, mitigating the generation of reactive oxygen species. The intracellular localization showed interaction with mitochondria and also a localization in the lysosome-related organelle. The SeNPs-BSA localization in mitochondria constitute a possible explanation for our result showing a very significant dampening of the PC-3 cell proliferation capabilities. The purpose of the use of sublethal compound concentrations was to limit adverse effects resulting from high cell death to best evaluate some cellular changes and the fate of these SeNPs on PC-3. Our findings provide new insight to further study the various mechanisms of cytotoxicity of SeNPs.

3.
Cell Mol Biol (Noisy-le-grand) ; 69(4): 179-187, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37329528

ABSTRACT

The expression of six transmembrane epithelial antigen of the prostate (STEAP2) is increased in prostate cancer when compared to normal tissue, suggesting a role for STEAP2 in disease progression. This study aimed to determine whether targeting STEAP2 with an anti-STEAP2 polyclonal antibody (pAb) or CRISPR/Cas9 knockout influenced aggressive prostate cancer traits. Gene expression analysis of the STEAP gene family was performed in a panel of prostate cancer cell lines; C4-2B, DU145, LNCaP and PC3. The highest increases in STEAP2 gene expression were observed in C4-2B and LNCaP cells (p<0.001 and p<0.0001 respectively) when compared to normal prostate epithelial PNT2 cells. These cell lines were treated with an anti-STEAP2 pAb and their viability assessed. CRISPR/Cas9 technology was used to knockout STEAP2 from C4-2B and LNCaP cells and viability, proliferation, migration and invasion assessed. When exposed to an anti-STEAP2 pAb, cell viability significantly decreased (p<0.05). When STEAP2 was knocked out, cell viability and proliferation was significantly decreased when compared to wild-type cells (p<0.001). The migratory and invasive potential of knockout cells were also decreased. These data suggest that STEAP2 has a functional role in driving aggressive prostate cancer traits and could provide a novel therapeutic target for the treatment of prostate cancer.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Prostate/metabolism , Prostatic Neoplasms/metabolism , Gene Expression Profiling , Cell Line, Tumor
4.
Clin Epigenetics ; 15(1): 63, 2023 04 15.
Article in English | MEDLINE | ID: mdl-37060086

ABSTRACT

BACKGROUND: Ovarian cancer has a specific unmet clinical need, with a persistently poor 5-year survival rate observed in women with advanced stage disease warranting continued efforts to develop new treatment options. The amplification of BRD4 in a significant subset of high-grade serous ovarian carcinomas (HGSC) has led to the development of BET inhibitors (BETi) as promising antitumour agents that have subsequently been evaluated in phase I/II clinical trials. Here, we describe the molecular effects and ex vivo preclinical activities of i-BET858, a bivalent pan-BET inhibitor with proven in vivo BRD inhibitory activity. RESULTS: i-BET858 demonstrates enhanced cytotoxic activity compared with earlier generation BETis both in cell lines and primary cells derived from clinical samples of HGSC. At molecular level, i-BET858 triggered a bipartite transcriptional response, comprised of a 'core' network of genes commonly associated with BET inhibition in solid tumours, together with a unique i-BET858 gene signature. Mechanistically, i-BET858 elicited enhanced DNA damage, cell cycle arrest and apoptotic cell death compared to its predecessor i-BET151. CONCLUSIONS: Overall, our ex vivo and in vitro studies indicate that i-BET858 represents an optimal candidate to pursue further clinical validation for the treatment of HGSC.


Subject(s)
Antineoplastic Agents , Carcinoma , Ovarian Neoplasms , Female , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , DNA Methylation , Carcinoma, Ovarian Epithelial/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Cell Cycle Checkpoints , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma/genetics , Apoptosis , DNA Damage
5.
Redox Biol ; 61: 102641, 2023 05.
Article in English | MEDLINE | ID: mdl-36842241

ABSTRACT

At physiological levels, the trace element selenium plays a key role in redox reactions through the incorporation of selenocysteine in antioxidant enzymes. Selenium has also been evaluated as a potential anti-cancer agent, where selenium nanoparticles have proven effective, and are well tolerated in vivo at doses that are toxic as soluble Se. The use of such nanoparticles, coated with either serum albumin or the naturally occurring alkaline polysaccharide chitosan, also serves to enhance biocompatibility and bioavailability. Here we demonstrate a novel role for selenium in regulating histone methylation in ovarian cancer cell models treated with inorganic selenium nanoparticles coated with serum albumin or chitosan. As well as inducing thioredoxin reductase expression, ROS activity and cancer cell cytotoxicity, coated nanoparticles caused significant increases in histone methylation. Specifically, selenium nanoparticles triggered an increase in the methylation of histone 3 at lysines K9 and K27, histone marks involved in both the activation and repression of gene expression, thus suggesting a fundamental role for selenium in these epigenetic processes. This direct function was confirmed using chemical inhibitors of the histone lysine methyltransferases EZH2 (H3K27) and G9a/EHMT2 (H3K9), both of which blocked the effect of selenium on histone methylation. This novel role for selenium supports a distinct function in histone methylation that occurs due to a decrease in S-adenosylhomocysteine, an endogenous inhibitor of lysine methyltransferases, the metabolic product of methyl-group transfer from S-adenosylmethionine in the one-carbon metabolism pathway. These observations provide important new insights into the action of selenium nanoparticles. It is now important to consider both the classic antioxidant and novel histone methylation effects of this key redox element in its development in cancer therapy and other applications.


Subject(s)
Chitosan , Selenium , Histones/metabolism , Methylation , Selenium/metabolism , Lysine/metabolism , S-Adenosylhomocysteine/metabolism , Antioxidants/metabolism , Chitosan/metabolism , Histone-Lysine N-Methyltransferase/genetics
6.
Front Oncol ; 12: 1014280, 2022.
Article in English | MEDLINE | ID: mdl-36505806

ABSTRACT

Background: Ovarian cancer (OC) is amongst the most lethal of common cancers in women. Lacking in specific symptoms in the early stages, OC is predominantly diagnosed late when the disease has undergone metastatic spread and chemotherapy is relied on to prolong life. Platinum-based therapies are preferred and although many tumors respond initially, the emergence of platinum-resistance occurs in the majority of cases after which prognosis is very poor. Upregulation of DNA damage pathways is a common feature of platinum resistance in OC with cyclin dependent kinases (CDKs) serving as key regulators of this process and suggesting that CDK inhibitors (CDKis) could be effective tools in the treatment of platinum resistant and refractory OC. Aim: The aim of this study was to evaluate the efficacy of CDKis in platinum resistant OC models and serve as a predictor of potential clinical utility. Methods: The efficacy of CDKi, dinaciclib, was determined in wildtype and platinum resistant cell line pairs representing different OC subtypes. In addition, dinaciclib was evaluated in primary cells isolated from platinum-sensitive and platinum-refractory tumors to increase the clinical relevance of the study. Results and conclusions: Dinaciclib proved highly efficacious in OC cell lines and primary cells, which were over a thousand-fold more sensitive to the CDKi than to cisplatin. Furthermore, cisplatin resistance in these cells did not influence sensitivity to dinaciclib and the two drugs combined additively in both platinum-sensitive and platinum-resistant OC cells suggesting a potential role for pan-CDKis (CDKis targeting multiple CDKs), such as dinaciclib, in the treatment of advanced and platinum-resistant OC.

7.
Pharmaceutics ; 13(10)2021 Oct 16.
Article in English | MEDLINE | ID: mdl-34684000

ABSTRACT

Following oral administration, the bioavailability of progesterone is low and highly variable. As a result, no clinically relevant, natural progesterone oral formulation is available. After oral delivery, first-pass metabolism initially occurs in the intestines; however, very little information on progesterone metabolism in this organ currently exists. The aim of this study is to investigate the contributions of liver and intestine to progesterone clearance. In the presence of NADPH, a rapid clearance of progesterone was observed in human and rat liver samples (t1/2 2.7 and 2.72 min, respectively). The rate of progesterone depletion in intestine was statistically similar between rat and human (t1/2 197.6 min in rat and 157.2 min in human). However, in the absence of NADPH, progesterone was depleted at a significantly lower rate in rat intestine compared to human. The roles of aldo keto reductases (AKR), xanthine oxidase (XAO) and aldehyde oxidase (AOX) in progesterone metabolism were also investigated. The rate of progesterone depletion was found to be significantly reduced by AKR1C, 1D1 and 1B1 in human liver and by AKR1B1 in human intestine. The inhibition of AOX also caused a significant reduction in progesterone degradation in human liver, whereas no change was observed in the presence of an XAO inhibitor. Understanding the kinetics of intestinal as well as liver metabolism is important for the future development of progesterone oral formulations. This novel information can inform decisions on the development of targeted formulations and help predict dosage regimens.

8.
Cancers (Basel) ; 13(18)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34572854

ABSTRACT

Functional genomics is the study of how the genome and its products, including RNA and proteins, function and interact to affect different biological processes. The field of functional genomics includes transcriptomics, proteomics, metabolomics and epigenomics, as these all relate to controlling the genome leading to expression of particular phenotypes. By studying whole genomes-clinical genomics, transcriptomes and epigenomes-functional genomics allows the exploration of the diverse relationship between genotype and phenotype, not only for humans as a species but also in individuals, allowing an understanding and evaluation of how the functional genome 'contributes' to different diseases. Functional variation in disease can help us better understand that disease, although it is currently limited in terms of ethnic diversity, and will ultimately give way to more personalized treatment plans.

9.
Cancers (Basel) ; 13(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34359703

ABSTRACT

Epithelial ovarian cancer (EOC) is the most lethal disease of the female reproductive tract, and although most patients respond to the initial treatment with platinum (cPt)-based compounds, relapse is very common. We investigated the role of epigenetic changes in cPt-sensitive and -resistant EOC cell lines and found distinct differences in their enhancer landscape. Clinical data revealed that two genes (JAK1 and FGF10), which gained large enhancer clusters in resistant EOC cell lines, could provide novel biomarkers for early patient stratification with statistical independence for JAK1. To modulate the enhancer remodeling process and prevent the acquisition of cPt resistance in EOC cells, we performed a chromatin-focused RNAi screen in the presence of cPt. We identified subunits of the Nucleosome Remodeling and Deacetylase (NuRD) complex as critical factors sensitizing the EOC cell line A2780 to platinum treatment. Suppression of the Methyl-CpG Binding Domain Protein 3 (MBD3) sensitized cells and prevented the establishment of resistance under prolonged cPt exposure through alterations of H3K27ac at enhancer regions, which are differentially regulated in cPt-resistant cells, leading to a less aggressive phenotype. Our work establishes JAK1 as an independent prognostic marker and the NuRD complex as a potential target for combinational therapy.

10.
Cancers (Basel) ; 13(16)2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34439185

ABSTRACT

Histone Deacetylase (HDAC) enzymes are upregulated in cancer leading to the development of HDAC inhibiting compounds, several of which are currently in clinical trials. Side effects associated with toxicity and non-specific targeting indicate the need for efficient drug delivery approaches and tumor specific targeting to enhance HDAC efficacy in solid tumor cancers. SAHA encapsulation within F127 micelles functionalized with a surface hyaluronic acid moiety, was developed to target endometrial cancer cells expressing elevated levels of CD44. In vitro viability and morphology analyses was conducted in both 2D and 3D models to assess the translational potential of this approach. Encapsulation enhanced SAHA delivery and activity, demonstrating increased cytotoxic efficacy in 2D and 3D endometrial cancer models. High-content imaging showed improved nanoparticle internalization in 2D and CD44 enhanced penetration in 3D models. In addition, the nano-delivery system enhanced spheroid penetration resulting in cell growth suppression, p21 associated cell cycle arrest, as well as overcoming the formation of an EMT associated phenotype observed in free drug treated type II endometrial cancer cells. This study demonstrates that targeted nanoparticle delivery of SAHA could provide the basis for improving its efficacy in endometrial cancer. Using 3D models for endometrial cancer allows the elucidation of nanoparticle performance and CD44 targeting, likely through penetration and retention within the tumor model.

11.
Cancers (Basel) ; 13(5)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800911

ABSTRACT

Endometrial cancer (EC) is the sixth most prevalent female cancer globally and although high rates of success are achieved when diagnosed at an early stage, the 5-year survival rate for cancers diagnosed at Stages II-IV is below 50%. Improving patient outcomes will necessitate the introduction of novel therapies to the clinic. Pan-cyclin-dependent kinase inhibitors (CDKis) have been explored as therapies for a range of cancers due to their ability to simultaneously target multiple key cellular processes, such as cell cycle progression, transcription, and DNA repair. Few studies, however, have reported on their potential for the treatment of EC. Herein, we examined the effects of the pan-CDKi dinaciclib in primary cells isolated directly from tumors and EC cell lines. Dinaciclib was shown to elicit a bimodal action in EC cell lines, disrupting both cell cycle progression and phosphorylation of the RNA polymerase carboxy terminal domain, with a concomitant reduction in Bcl-2 expression. Furthermore, the therapeutic potential of combining dinaciclib and cisplatin was explored, with the drugs demonstrating synergy at specific doses in Type I and Type II EC cell lines. Together, these results highlight the potential of dinaciclib for use as an effective EC therapy.

12.
Nanoscale ; 13(12): 6129-6141, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33729236

ABSTRACT

Extracellular vesicles (EVs) are studied extensively as natural biomolecular shuttles and for their diagnostic and therapeutic potential. This exponential rise in interest has highlighted the need for highly robust and reproducible approaches for EV characterisation. Here we optimise quantitative nanomechanical tools and demonstrate the advantages of EV population screening by atomic force microscopy (AFM). Our high-content informatics analytical tools are made available for use by the EV community for widespread, standardised determination of structural stability. Ultracentrifugation (UC) and sonication, the common mechanical techniques used for EV isolation and loading respectively, are used to demonstrate the utility of optimised PeakForce-Quantitative Nano Mechanics (PF-QNM) analysis. EVs produced at an industrial scale exhibited biochemical and biomechanical alterations after exposure to these common techniques. UC resulted in slight increases in physical dimensions, and decreased EV adhesion concurrent with a decrease in CD63 content. Sonicated EVs exhibited significantly reduced levels of CD81, a decrease in size, increased Young's modulus and decreased adhesive force. These biomechanical and biochemical changes highlight the effect of EV sample preparation techniques on critical properties linked to EV cellular uptake and biological function. PF-QNM offers significant additional information about the structural information of EVs following their purification and downstream processing, and the analytical tools will ensure consistency of analysis of AFM data by the EV community, as this technique continues to become more widely implemented.


Subject(s)
Extracellular Vesicles , Elastic Modulus , Mechanical Phenomena , Microscopy, Atomic Force , Ultracentrifugation
13.
J Nanobiotechnology ; 19(1): 50, 2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33596915

ABSTRACT

BACKGROUND: Sialyl-Lewis X/L-selectin high affinity binding interactions between transmembrane O-glycosylated mucins proteins and the embryo have been implicated in implantation processes within the human reproductive system. However, the adhesive properties of these mucins at the endometrial cell surface are difficult to resolve due to known discrepancies between in vivo models and the human reproductive system and a lack of sensitivity in current in vitro models. To overcome these limitations, an in vitro model of the human endometrial epithelial was interrogated with single molecule force spectroscopy (SMFS) to delineate the molecular configurations of mucin proteins that mediate the high affinity L-selectin binding required for human embryo implantation. RESULTS: This study reveals that MUC1 contributes to both the intrinsic and extrinsic adhesive properties of the HEC-1 cellular surface. High expression of MUC1 on the cell surface led to a significantly increased intrinsic adhesion force (148 pN vs. 271 pN, p < 0.001), whereas this adhesion force was significantly reduced (271 pN vs. 118 pN, p < 0.001) following siRNA mediated MUC1 ablation. Whilst high expression of MUC1 displaying elevated glycosylation led to strong extrinsic (> 400 pN) L-selectin binding at the cell surface, low expression of MUC1 with reduced glycosylation resulted in significantly less (≤200 pN) binding events. CONCLUSIONS: An optimal level of MUC1 together with highly glycosylated decoration of the protein is critical for high affinity L-selectin binding. This study demonstrates that MUC1 contributes to cellular adhesive properties which may function to facilitate trophoblast binding to the endometrial cell surface through the L-selectin/sialyl-Lewis x adhesion system subsequent to implantation.


Subject(s)
L-Selectin/chemistry , L-Selectin/metabolism , Mucin-1/chemistry , Mucin-1/metabolism , Biophysics , Cell Adhesion , Cell Line , Epithelial Cells , Glycosylation , Humans , Mucins/metabolism , Single Molecule Imaging
14.
Pharmaceutics ; 12(8)2020 08 12.
Article in English | MEDLINE | ID: mdl-32806503

ABSTRACT

Following oral administration, the bioavailability of progestogens is very low and highly variable, in part due to metabolism by cytochrome P450 enzymes found in the mucosa of the small intestine. Conversely, the mucosa in the colon contains much lower levels of cytochrome P450 enzymes, thus, colonic delivery of progestogens may be beneficial. Microbiota in the colon are known to metabolize a great number of drugs, therefore, it is important to understand the stability of these hormones in the presence of colonic flora before developing formulations. The aim of this study was to investigate the stability of three progestogens: progesterone, and its two synthetic analogues, medroxyprogesterone acetate (MPA) and levonorgestrel (LNG), in the presence of human colonic microbiota. Progesterone, MPA, and LNG were incubated in mixed fecal inoculum (simulated human colonic fluid) under anerobic conditions. Progesterone was completely degraded after 2 h, whereas levels of MPA and LNG were still detectable after 24 h. The half-lives of progesterone, MPA, and LNG in fecal inoculum were 28, 644, and 240 min, respectively. This study describes the kinetics of colonic microbial metabolism of these hormones for the first time. MPA and LNG show promise for delivery to the colon, potentially improving pharmacokinetics over current oral delivery methods.

15.
Nanomedicine ; 29: 102258, 2020 10.
Article in English | MEDLINE | ID: mdl-32615338

ABSTRACT

High dose selenium acts as a cytotoxic agent, with potential applications in cancer treatment. However, clinical trials have failed to show any chemotherapeutic value of selenium at safe and tolerated doses (<90 µg/day). To enable the successful exploitation of selenium for cancer treatment, we evaluated inorganic selenium nanoparticles (SeNP), and found them effective in inhibiting ovarian cancer cell growth. In both SKOV-3 and OVCAR-3 ovarian cancer cell types SeNP treatment resulted in significant cytotoxicity. The two cell types displayed contrasting nanomechanical responses to SeNPs, with decreased surface roughness and membrane stiffness, characteristics of OVCAR-3 cell death. In SKOV-3, cell membrane surface roughness and stiffness increased, both properties associated with decreased metastatic potential. The beneficial effects of SeNPs on ovarian cancer cell death appear cell type dependent, and due to their low in vivo toxicity offer an exciting opportunity for future cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Ovarian Epithelial/drug therapy , Metal Nanoparticles/chemistry , Ovarian Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Biomechanical Phenomena , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Female , Humans , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Selenium/chemistry , Selenium/pharmacology
16.
Biosens Bioelectron ; 157: 112144, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32250927

ABSTRACT

In vitro fertilization (IVF) is the most common assisted reproductive technology used to treat infertility. Embryo selection for transfer in IVF cycles relies on the morphological evaluation by embryologists, either by conventional microscopic assessment or more recently by time-lapse imaging systems. Despite the introduction of time-lapse imaging improvements in IVF success rates have failed to materialize, therefore alternative approaches are needed. Recent studies have shown that embryos resulting in successful pregnancy differ in their secretome and metabolism compared to embryos that fail to implant, suggesting that molecular analysis of embryo culture medium could assist in non-invasive single embryo selection. However, this approach has yet to be adopted clinically due to the lack of appropriate highly sensitive screening technologies needed to assess volume-limited samples. Here we report the detection of hCGß, IL-8 and TNFα from conditioned culture media of single human embryos using electrochemical impedance spectroscopy. The impedimetric immunosensors revealed that morphologically non-viable embryos produce higher levels of IL-8 and TNFα, associated with abnormal cell division and cell death, respectively. More importantly, hCGß detection was able to discriminate apparently morphologically identical viable embryos. This work brings an objective dimension to embryo selection, which could overcome the major limitations of morphology-based embryo selection for implantation. Future work should include the validation of these biomarkers in a large patient cohort.


Subject(s)
Chorionic Gonadotropin, beta Subunit, Human/analysis , Culture Media, Conditioned/metabolism , Embryo, Mammalian/metabolism , Interleukin-8/analysis , Tumor Necrosis Factor-alpha/analysis , Biosensing Techniques/methods , Cell Line , Chorionic Gonadotropin, beta Subunit, Human/metabolism , Culture Media, Conditioned/analysis , Embryo Culture Techniques , Embryo Implantation , Embryonic Development , Female , Fertilization in Vitro , Humans , Immunoassay/methods , Interleukin-8/metabolism , Pregnancy , Tumor Necrosis Factor-alpha/metabolism
17.
Carcinogenesis ; 41(10): 1432-1443, 2020 10 15.
Article in English | MEDLINE | ID: mdl-31957805

ABSTRACT

A key challenge in the implementation of anti-metastatics as cancer therapies is the multi-modal nature of cell migration, which allows tumour cells to evade the targeted inhibition of specific cell motility pathways. The nuclear factor-kappaB (NF-κB) co-factor B-cell lymphoma 3 (Bcl-3) has been implicated in breast cancer cell migration and metastasis, yet it remains to be determined exactly which cell motility pathways are controlled by Bcl-3 and whether migrating tumour cells are able to evade Bcl-3 intervention. Addressing these questions and the mechanism underpinning Bcl-3's role in this process would help determine its potential as a therapeutic target. Here we identify Bcl-3 as an upstream regulator of the two principal forms of breast cancer cell motility, involving collective and single-cell migration. This was found to be mediated by the master regulator Cdc42 through binding of the NF-κB transcription factor p50 to the Cdc42 promoter. Notably, Bcl-3 depletion inhibited both stable and transitory motility phenotypes in breast cancer cells with no evidence of migratory adaptation. Overexpression of Bcl-3 enhanced migration and increased metastatic tumour burden of breast cancer cells in vivo, whereas overexpression of a mutant Bcl-3 protein, which is unable to bind p50, suppressed cell migration and metastatic tumour burden suggesting that disruption of Bcl-3/NF-κB complexes is sufficient to inhibit metastasis. These findings identify a novel role for Bcl-3 in intrinsic and adaptive multi-modal cell migration mediated by its direct regulation of the Rho GTPase Cdc42 and identify the upstream Bcl-3:p50 transcription complex as a potential therapeutic target for metastatic disease.


Subject(s)
B-Cell Lymphoma 3 Protein/physiology , Breast Neoplasms/pathology , Cell Movement , NF-kappa B p50 Subunit/metabolism , cdc42 GTP-Binding Protein/metabolism , Animals , B-Cell Lymphoma 3 Protein/genetics , Cell Line, Tumor , Female , Humans , Mice , NF-kappa B p50 Subunit/genetics
18.
J Immunother Cancer ; 7(1): 280, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31665084

ABSTRACT

BACKGROUND: The treatment of endometrial cancer (EC), the most common gynecological cancer, is currently hampered by the toxicity of current cytotoxic agents, meaning novel therapeutic approaches are urgently required. METHODS: A cohort of 161 patients was evaluated for the expression of the receptor for advanced glycation end products (RAGE) in endometrial tissues. The present study also incorporates a variety of in vitro methodologies within multiple cell lines to evaluate RAGE expression and antibody-drug conjugate efficacy, internalisation and intercellular trafficking. Additionally, we undertook in vivo bio-distribution and toxicity evaluation to determine the suitability of our chosen therapeutic approach, together with efficacy studies in a mouse xenograft model of disease. RESULTS: We have identified an association between over-expression of the receptor for advanced glycation end products (RAGE) and EC (H-score = Healthy: 0.46, SD 0.26; Type I EC: 2.67, SD 1.39; Type II EC: 2.20, SD 1.34; ANOVA, p < 0.0001). Furthermore, increased expression was negatively correlated with patient survival (Spearman's Rank Order Correlation: ρ = - 0.3914, p < 0.05). To exploit this association, we developed novel RAGE-targeting antibody drug conjugates (ADC) and demonstrated the efficacy of this approach. RAGE-targeting ADCs were up to 100-fold more efficacious in EC cells compared to non-malignant cells and up to 200-fold more cytotoxic than drug treatment alone. Additionally, RAGE-targeting ADCs were not toxic in an in vivo pre-clinical mouse model, and significantly reduced tumour growth in a xenograft mouse model of disease. CONCLUSIONS: These data, together with important design considerations implied by the present study, suggest RAGE-ADCs could be translated to novel therapeutics for EC patients.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/metabolism , Immunoconjugates/therapeutic use , Receptor for Advanced Glycation End Products/antagonists & inhibitors , Aged , Animals , Antibody-Dependent Cell Cytotoxicity , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/pharmacokinetics , Biomarkers , Biomarkers, Tumor , Cell Line, Tumor , Disease Models, Animal , Endometrial Neoplasms/mortality , Endometrial Neoplasms/pathology , Female , Gene Expression , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/adverse effects , Immunoconjugates/pharmacokinetics , Immunohistochemistry , Mice , Middle Aged , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Tissue Distribution , Xenograft Model Antitumor Assays
19.
Antibodies (Basel) ; 8(1)2019 Jan 07.
Article in English | MEDLINE | ID: mdl-31544813

ABSTRACT

Antibodies, antibody-like molecules, and therapeutics incorporating antibodies as a targeting moiety, such as antibody-drug conjugates, offer significant potential for the development of highly efficacious drugs against a wide range of disorders. Despite some success, truly harnessing the superior targeting properties of these molecules requires a platform from which to effectively identify the best candidates for drug development. To streamline the development of antibody-drug conjugates targeting gynecological cancers within our laboratory, we incorporated surface plasmon resonance analysis (Biacore™ T200) into our development toolkit. Antibodies, selected based on positive ELISA screens as suitable for development as antibody-drug conjugates, were evaluated using surface plasmon resonance to determine a wide range of characteristics including specificity, kinetics/affinity, the effect of linker binding, the impact of the drug to antibody ratio, and the effect of endosomal pH on antibody-antigen binding. Analysis revealed important kinetics data and information regarding the effect of conjugation and endosomal pH on our antibody candidates that correlated with cell toxicity and antibody internalization data. As well as explaining observations from cell-based assays regarding antibody-drug conjugate efficacies, these data also provide important information regarding intelligent antibody selection and antibody-drug conjugate design. This study demonstrates the application of surface plasmon resonance technology as a platform, where detailed information can be obtained, supporting the requirements for rapid and high-throughput screening that will enable enhanced antibody-drug conjugate development.

20.
J Mol Med (Berl) ; 97(9): 1315-1327, 2019 09.
Article in English | MEDLINE | ID: mdl-31256208

ABSTRACT

Polycystic ovary syndrome (PCOS) is a common gynaecological disorder, with a prevalence of up to 12% of women of reproductive age, and is in part characterised by elevated circulating androgens and aberrant expression of androgen receptor (AR) in the endometrium. A high percentage of PCOS patients suffer from infertility, a condition that appears to be linked to mistimed and incomplete decidualisation critically affecting events surrounding embryo implantation. The aim of this study was to examine the involvement of MAGEA11, and the genome-wide role of AR in PCOS. We determined that elevated androgen levels on PCOS cells had an impact on the delayed and incomplete decidual transformation of endometrial cells. The AR co-regulator MAGEA11, a known enhancer of AR function, was constitutively overexpressed throughout the menstrual cycle of PCOS patients, co-localised in the nucleus of PCOS stromal tissue and cells and formed a molecular complex with AR. Genome-wide AR analysis in PCOS stromal cells revealed that AR targets included genes involved in cell death and apoptosis, as well as genes commonly dysregulated in endometrial cancer. Enhanced MAGEA11 and AR-mediated transcriptional regulation may impact on a correct endometrial decidualisation response, subsequently affecting endometrial receptivity in these infertile women. KEY MESSAGES: MAGEA11 and AR are overexpressed in hyperandrogenic PCOS patients. MAGEA11-AR overexpression in PCOS correlates with delayed decidualisation. AR and MAGEA11 associate in a molecular complex. AR directly regulates a unique set of genes controlling gene differentiation.


Subject(s)
Antigens, Neoplasm/metabolism , Decidua/metabolism , Neoplasm Proteins/metabolism , Polycystic Ovary Syndrome/metabolism , Receptors, Androgen/metabolism , Adult , Androgens/metabolism , Apoptosis/physiology , Cell Death/physiology , Embryo Implantation/physiology , Endometrial Neoplasms/metabolism , Endometrium/metabolism , Female , Gene Expression Regulation/physiology , Humans , Infertility, Female/metabolism , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...