Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 13: 612, 2019.
Article in English | MEDLINE | ID: mdl-31249507

ABSTRACT

BACKGROUND: Short-latency intracortical inhibition (SICI) and motor surround inhibition (mSI) are cortical phenomena that have been investigated with transcranial magnetic stimulation (TMS). mSI is believed to be necessary for the execution of fine finger movements, SICI may participate in mSI genesis, and however, the mechanisms underlying both mSI and SICI are not entirely clear. OBJECTIVE: We explored the cortical physiology of SICI and mSI in healthy subjects by TMS-evoked cortical potentials (TEPs). METHODS: Single (sp) and paired-pulse (pp) TMS were delivered on the ADM muscle cortical hotspot while recording EEG and EMG. Three conditions were tested: spTMS and ppTMS at rest, and spTMS at the onset of an index finger movement. SICI and mSI were calculated on the ADM motor evoked potential (MEP) and two groups were defined based on the presence of mSI. Average TEPs were calculated for each condition and for five regions of interest. RESULTS: At movement onset we observed a widespread reduction of the inhibitory late component N100 suggesting cortical facilitation associated with motor performance. At motor cortex level, SICI and mSI are associated with similar modulation of TEPs consisting in a reduction of P30 and an increase of N45 amplitude. CONCLUSION: Our findings suggest that SICI and mSI modulate cortical excitability with shared inhibitory mechanisms.

2.
J Cardiovasc Magn Reson ; 20(1): 16, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29514708

ABSTRACT

BACKGROUND: Dark rim artifacts in first-pass cardiovascular magnetic resonance (CMR) perfusion images can mimic perfusion defects and affect diagnostic accuracy for coronary artery disease (CAD). We evaluated whether quantitative myocardial blood flow (MBF) can differentiate dark rim artifacts from true perfusion defects in CMR perfusion. METHODS: Regadenoson perfusion CMR was performed at 1.5 T in 76 patients. Significant CAD was defined by quantitative invasive coronary angiography (QCA) ≥ 50% diameter stenosis. Non-significant CAD (NonCAD) was defined as stenosis by QCA < 50% diameter stenosis or computed tomographic coronary angiography (CTA) < 30% in all major epicardial arteries. Dark rim artifacts had study specific and guideline-based definitions for comparison purposes. MBF was quantified at the pixel-level and sector-level. RESULTS: In a NonCAD subgroup with dark rim artifacts, stress MBF was lower in the subendocardial than midmyocardial and epicardial layers (2.17 ± 0.61 vs. 3.06 ± 0.75 vs. 3.24 ± 0.80 mL/min/g, both p < 0.001) and was also 30% lower than in remote regions (2.17 ± 0.61 vs. 2.83 ± 0.67 mL/min/g, p < 0.001). However, subendocardial stress MBF in dark rim artifacts was 37-56% higher than in true perfusion defects (2.17 ± 0.61 vs. 0.95 ± 0.43 mL/min/g, p < 0.001). Absolute stress MBF differentiated CAD from NonCAD with an accuracy ranging from 86 to 89% (all p < 0.001) using pixel-level analyses. Similar results were seen at a sector level. CONCLUSION: Quantitative stress MBF is lower in dark rim artifacts than remote myocardium but significantly higher than in true perfusion defects. If confirmed in larger series, this approach may aid the interpretation of clinical stress perfusion exams. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT00027170 ; first posted 11/28/2001; updated 11/27/2017.


Subject(s)
Artifacts , Coronary Artery Disease/diagnostic imaging , Coronary Circulation , Coronary Stenosis/diagnostic imaging , Coronary Vessels/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Myocardial Perfusion Imaging/methods , Adult , Aged , Blood Flow Velocity , Coronary Angiography , Coronary Artery Disease/physiopathology , Coronary Stenosis/physiopathology , Coronary Vessels/physiopathology , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Purines/administration & dosage , Pyrazoles/administration & dosage , Reproducibility of Results , Retrospective Studies , Severity of Illness Index , Vasodilator Agents/administration & dosage
3.
JACC Cardiovasc Imaging ; 11(5): 697-707, 2018 05.
Article in English | MEDLINE | ID: mdl-29454767

ABSTRACT

OBJECTIVES: The authors developed a fully automated framework to quantify myocardial blood flow (MBF) from contrast-enhanced cardiac magnetic resonance (CMR) perfusion imaging and evaluated its diagnostic performance in patients. BACKGROUND: Fully quantitative CMR perfusion pixel maps were previously validated with microsphere MBF measurements and showed potential in clinical applications, but the methods required laborious manual processes and were excessively time-consuming. METHODS: CMR perfusion imaging was performed on 80 patients with known or suspected coronary artery disease (CAD) and 17 healthy volunteers. Significant CAD was defined by quantitative coronary angiography (QCA) as ≥70% stenosis. Nonsignificant CAD was defined by: 1) QCA as <70% stenosis; or 2) coronary computed tomography angiography as <30% stenosis and a calcium score of 0 in all vessels. Automatically generated MBF maps were compared with manual quantification on healthy volunteers. Diagnostic performance of the automated MBF pixel maps was analyzed on patients using absolute MBF, myocardial perfusion reserve (MPR), and relative measurements of MBF and MPR. RESULTS: The correlation between automated and manual quantification was excellent (r = 0.96). Stress MBF and MPR in the ischemic zone were lower than those in the remote myocardium in patients with significant CAD (both p < 0.001). Stress MBF and MPR in the remote zone of the patients were lower than those in the normal volunteers (both p < 0.001). All quantitative metrics had good area under the curve (0.864 to 0.926), sensitivity (82.9% to 91.4%), and specificity (75.6% to 91.1%) on per-patient analysis. On a per-vessel analysis of the quantitative metrics, area under the curve (0.837 to 0.864), sensitivity (75.0% to 82.7%), and specificity (71.8% to 80.9%) were good. CONCLUSIONS: Fully quantitative CMR MBF pixel maps can be generated automatically, and the results agree well with manual quantification. These methods can discriminate regional perfusion variations and have high diagnostic performance for detecting significant CAD. (Technical Development of Cardiovascular Magnetic Resonance Imaging; NCT00027170).


Subject(s)
Coronary Artery Disease/diagnostic imaging , Coronary Circulation , Coronary Stenosis/diagnostic imaging , Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging/methods , Myocardial Perfusion Imaging/methods , Automation , Blood Flow Velocity , Case-Control Studies , Coronary Artery Disease/physiopathology , Coronary Stenosis/physiopathology , Humans , Predictive Value of Tests , Reproducibility of Results , Severity of Illness Index
4.
J Cardiovasc Magn Reson ; 17: 11, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25827156

ABSTRACT

BACKGROUND: Surface coil-related field inhomogeneity potentially confounds pixel-wise quantitative analysis of perfusion CMR images. This study assessed the effect of surface coil-related field inhomogeneity on the spatial variation of pixel-wise myocardial blood flow (MBF), and assessed its impact on the ability of MBF quantification to differentiate ischaemic from remote coronary territories. Two surface coil intensity correction (SCIC) techniques were evaluated: 1) a proton density-based technique (PD-SCIC) and; 2) a saturation recovery steady-state free precession-based technique (SSFP-SCIC). METHODS: 26 subjects (18 with significant CAD and 8 healthy volunteers) underwent stress perfusion CMR using a motion-corrected, saturation recovery SSFP dual-sequence protocol. A proton density (PD)-weighted image was acquired at the beginning of the sequence. Surface coil-related field inhomogeneity was approximated using a third-order surface fit to the PD image or a pre-contrast saturation prepared SSFP image. The estimated intensity bias field was subsequently applied to the image series. Pixel-wise MBF was measured from mid-ventricular stress images using the two SCIC approaches and compared to measurements made without SCIC. RESULTS: MBF heterogeneity in healthy volunteers was higher using SSFP-SCIC (24.8 ± 4.1%) compared to PD-SCIC (20.8 ± 3.0%; p = 0.009), however heterogeneity was significantly lower using either SCIC technique compared to analysis performed without SCIC (36.2 ± 6.3%). In CAD patients, the difference in MBF between remote and ischaemic territories was minimal when analysis was performed without SCIC (0.06 ± 0.91 mL/min/kg), and was substantially lower than with either PD-SCIC (0.50 ± 0.63 mL/min/kg; p = 0.013) or with SSFP-SCIC (0.63 ± 0.89 mL/min/kg; p = 0.005). In 6 patients, MBF quantified without SCIC was artifactually higher in the stenosed coronary territory compared to the remote territory. PD-SCIC and SSFP-SCIC had similar differences in MBF between remote and ischaemic territories (p = 0.145). CONCLUSIONS: This study demonstrates that surface coil-related field inhomogeneity can confound pixel-wise MBF quantification. Whilst a PD-based SCIC led to a more homogenous correction than a saturation recovery SSFP-based technique, this did not result in an appreciable difference in the differentiation of ischaemic from remote coronary territories and thus either method could be applied.


Subject(s)
Coronary Artery Disease/diagnosis , Coronary Circulation , Coronary Vessels/physiopathology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Myocardial Perfusion Imaging/methods , Aged , Artifacts , Case-Control Studies , Coronary Artery Disease/physiopathology , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...