Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 132024 Mar 25.
Article in English | MEDLINE | ID: mdl-38525876

ABSTRACT

Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC-associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.


Although the clinical presentation of individuals with autism spectrum disorder (ASD) can vary widely, the core features are repetitive behaviors and difficulties with social interactions and communication. In most cases, the cause of autism is unknown. However, in some cases, such as a form of ASD known as 16p11.2 deletion syndrome, specific genetic changes are responsible. Despite this variability in possible causes and clinical manifestations, the similarity of the core behavioral symptoms across different forms of the disorder indicates that there could be a shared biological mechanism. Furthermore, genetic studies suggest that abnormalities in early fetal brain development could be a crucial underlying cause of ASD. In order to form the complex structure of the brain, fetal brain cells must migrate and start growing extensions that ultimately become key structures of neurons. To test for shared biological mechanisms, Prem et al. reprogrammed blood cells from people with either 16p11.2 deletion syndrome or ASD with an unknown cause to become fetal-like brain cells. Experiments showed that both migration of the cells and their growth of extensions were similarly disrupted in the cells derived from both groups of individuals with autism. These crucial developmental changes were driven by alterations to an important signaling molecule in a pathway involved in brain function, known as the mTOR pathway. However, in some cells the pathway was overactive, whereas in others it was underactive. To probe the potential of the mTOR pathway as a therapeutic target, Prem et al. tested drugs that manipulate the pathway, finding that they could successfully reverse the defects in cells derived from people with both types of ASD. The discovery that a shared biological process may underpin different forms of ASD is important for understanding the early brain changes that are involved. A common target, like the mTOR pathway, could offer hope for treatments for a wide range of ASDs. However, to translate these benefits to the clinic, further research is needed to understand whether a treatment that is effective in fetal cells would also benefit people with autism.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Neural Stem Cells , Humans , Autistic Disorder/genetics , Autism Spectrum Disorder/genetics , Neurites , TOR Serine-Threonine Kinases
2.
RNA ; 30(4): 448-462, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38282416

ABSTRACT

This report describes a chemiluminescence-based detection method for RNAs on northern blots, designated Chemi-Northern. This approach builds on the simplicity and versatility of northern blotting, while dispensing of the need for expensive and cumbersome radioactivity. RNAs are first separated by denaturing gel electrophoresis, transferred to a nylon membrane, and then hybridized to a biotinylated RNA or DNA antisense probe. Streptavidin conjugated with horseradish peroxidase and enhanced chemiluminescence substrate are then used to detect the probe bound to the target RNA. Our results demonstrate the versatility of this method in detecting natural and engineered RNAs expressed in cells, including messenger and noncoding RNAs. We show that Chemi-Northern detection is sensitive and fast, detecting attomole amounts of RNA in as little as 1 sec, with high signal intensity and low background. The dynamic response displays excellent linearity. Using Chemi-Northern, we measure the reproducible, statistically significant reduction of mRNA levels by human sequence-specific RNA-binding proteins, PUM1 and PUM2. Additionally, we measure the interaction of the poly(A) binding protein, PABPC1, with polyadenylated mRNA. Thus, the Chemi-Northern method provides a versatile, simple, and cost-effective method to enable researchers to analyze expression, processing, binding, and decay of RNAs.


Subject(s)
RNA-Binding Proteins , RNA , Humans , Blotting, Northern , RNA, Messenger/metabolism , RNA/chemistry , Oligonucleotide Probes , Base Sequence , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , DNA Probes
3.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873431

ABSTRACT

This report describes a chemiluminescence-based detection method for RNAs on northern blots, designated Chemi-Northern. This approach builds on the simplicity and versatility of northern blotting, while dispensing of the need for expensive and cumbersome radioactivity. RNAs are first separated on denaturing gel electrophoresis, transferred to a nylon membrane, and then hybridized to a biotinylated RNA or DNA antisense probe. Streptavidin conjugated with horseradish peroxidase and enhanced chemiluminescence substrate are then used to detect the probe bound to the target RNA. Our results demonstrate the versatility of this method in detecting natural and engineered RNAs expressed in cells, including messenger and noncoding RNAs. We show that Chemi-Northern detection is sensitive and fast, detecting attomole amounts of RNA in as little as 1 second, with high signal intensity and low background. The dynamic response displays excellent linearity. Using Chemi-Northern, we measure the significant, reproducible reduction of mRNA levels by human sequence-specific RNA-binding proteins, PUM1 and PUM2. Additionally, we measure the interaction of endogenous poly(A) binding protein, PABPC1, with poly-adenylated mRNA. Thus, the Chemi-Northern method provides a versatile, simple, cost-effective method to enable researchers to detect and measure changes in RNA expression, processing, binding, and decay of RNAs.

5.
J Biol Chem ; 298(9): 102270, 2022 09.
Article in English | MEDLINE | ID: mdl-35850301

ABSTRACT

Pumilio is a sequence-specific RNA-binding protein that controls development, stem cell fate, and neurological functions in Drosophila. Pumilio represses protein expression by destabilizing target mRNAs in a manner dependent on the CCR4-NOT deadenylase complex. Three unique repression domains in the N-terminal region of Pumilio were previously shown to recruit CCR4-NOT, but how they do so was not well understood. In this study, we identified the motifs that are necessary and sufficient for the activity of the third repression domain of Pumilio, designated RD3, which is present in all isoforms and has conserved regulatory function. We identified multiple conserved regions of RD3 that are important for repression activity in cell-based reporter gene assays. Using yeast two-hybrid assays, we show that RD3 contacts specific regions of the Not1, Not2, and Not3 subunits of the CCR4-NOT complex. Our results indicate that RD3 makes multivalent interactions with CCR4-NOT mediated by conserved short linear interaction motifs. Specifically, two phenylalanine residues in RD3 make crucial contacts with Not1 that are essential for its repression activity. Using reporter gene assays, we also identify three new target mRNAs that are repressed by Pumilio and show that RD3 contributes to their regulation. Together, these results provide important insights into the mechanism by which Pumilio recruits CCR4-NOT to regulate the expression of target mRNAs.


Subject(s)
Conserved Sequence , Drosophila Proteins , RNA, Messenger , RNA-Binding Proteins , Ribonucleases , Amino Acid Motifs , Animals , Drosophila Proteins/chemistry , Drosophila Proteins/economics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Phenylalanine/chemistry , Phenylalanine/genetics , Protein Isoforms/chemistry , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/economics , RNA-Binding Proteins/metabolism , Ribonucleases/chemistry , Ribonucleases/metabolism
6.
Stem Cell Reports ; 17(6): 1380-1394, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35623351

ABSTRACT

Neural precursor cell (NPC) dysfunction has been consistently implicated in autism. Induced pluripotent stem cell (iPSC)-derived NPCs from two autism groups (three idiopathic [I-ASD] and two 16p11.2 deletion [16pDel]) were used to investigate if proliferation is commonly disrupted. All five individuals display defects, with all three macrocephalic individuals (two 16pDel, one I-ASD) exhibiting hyperproliferation and the other two I-ASD subjects displaying hypoproliferation. NPCs were challenged with bFGF, and all hyperproliferative NPCs displayed blunted responses, while responses were increased in hypoproliferative cells. mRNA expression studies suggest that different pathways can result in similar proliferation phenotypes. Since 16pDel deletes MAPK3, P-ERK was measured. P-ERK is decreased in hyperproliferative but increased in hypoproliferative NPCs. While these P-ERK changes are not responsible for the phenotypes, P-ERK and bFGF response are inversely correlated with the defects. Finally, we analyzed iPSCs and discovered that 16pDel displays hyperproliferation, while idiopathic iPSCs were normal. These data suggest that NPC proliferation defects are common in ASD.


Subject(s)
Autistic Disorder , Induced Pluripotent Stem Cells , Autistic Disorder/genetics , Cell Proliferation/genetics , Chromosome Deletion , Humans , Mitogens , Phenotype
7.
Wiley Interdiscip Rev RNA ; 12(2): e1620, 2021 03.
Article in English | MEDLINE | ID: mdl-32738036

ABSTRACT

The TRIM-NHL family of proteins shares a conserved domain architecture and play crucial roles in stem cell biology, fertility, and development. This review synthesizes new insights that have revolutionized our understanding of the molecular and biological functions of TRIM-NHL proteins. Multiple TRIM-NHLs have been shown to bind specific RNA sequences and structures. X-ray crystal structures of TRIM-NHL proteins in complex with RNA ligands reveal versatile modes of RNA recognition by the NHL domain. Functional and genetic analyses show that TRIM-NHL RNA-binding proteins negatively regulate the protein expression from the target mRNAs that they bind. This repressive activity plays a crucial role in controlling stem cell fate in the developing brain and differentiating germline. To highlight these paradigms, we focus on several of the most-extensively studied TRIM-NHL proteins, specifically Drosophila and vertebrate TRIM71, among others. Brat is essential for development and regulates key target mRNAs to control differentiation of germline and neural stem cells. TRIM71 is also required for development and promotes stem cell proliferation while antagonizing differentiation. Moreover, TRIM71 can be utilized to help reprogram fibroblasts into induced pluripotent stem cells. Recently discovered mutations in TRIM71 cause the neurodevelopmental disease congenital hydrocephalus and emphasize the importance of its RNA-binding function in brain development. Further relevance of TRIM71 to disease pathogenesis comes from evidence linking it to several types of cancer, including liver and testicular cancer. Collectively, these advances demonstrate a primary role for TRIM-NHL proteins in the post-transcriptional regulation of gene expression in crucial biological processes. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation RNA Turnover and Surveillance > Regulation of RNA Stability.


Subject(s)
RNA-Binding Proteins , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases , Animals , DNA-Binding Proteins/genetics , Drosophila/genetics , Drosophila Proteins/genetics , Humans , Male , RNA-Binding Proteins/genetics , Ubiquitin-Protein Ligases/genetics
8.
Curr Opin Insect Sci ; 43: 11-20, 2021 02.
Article in English | MEDLINE | ID: mdl-32950745

ABSTRACT

Ecdysteroids are a class of steroid hormones that controls molting and metamorphic transitions in Ecdysozoan species including insects, in which ecdysteroid biosynthesis and its regulation have been extensively studied. Insect ecdysteroids are produced from dietary sterols by a series of reduction-oxidation reactions in the prothoracic gland and in Drosophila they are released into the hemolymph via vesicle-mediated secretion at the time of metamorphosis. To initiate precisely controlled ecdysteroid pulses, the prothoracic gland functions as a central node integrating both intrinsic and extrinsic signals to control ecdysteroid biosynthesis and secretion. In this review, we outline recent progress in the characterization of ecdysone biosynthesis and steroid trafficking pathways and the discoveries of novel factors regulating prothoracic gland function.


Subject(s)
Ecdysteroids/biosynthesis , Insecta/growth & development , Metamorphosis, Biological/physiology , Animals , Bodily Secretions , Insecta/genetics , Insecta/metabolism
9.
Adv Neurobiol ; 25: 79-107, 2020.
Article in English | MEDLINE | ID: mdl-32578145

ABSTRACT

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that is remarkably heterogeneous at the clinical, neurobiological, and genetic levels. ASD can also affect language, a uniquely human capability, and is caused by abnormalities in brain development. Traditionally obtaining biologically relevant human cells to study ASD has been extremely difficult, but new technologies including iPSC-derived neurons and high-throughput omic techniques now provide new, exciting tools to uncover the cellular and signaling basis of ASD etiology.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Induced Pluripotent Stem Cells , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Humans , Neurons , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...