Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38352499

ABSTRACT

The challenge of systematically modifying and optimizing regulatory elements for precise gene expression control is central to modern genomics and synthetic biology. Advancements in generative AI have paved the way for designing synthetic sequences with the aim of safely and accurately modulating gene expression. We leverage diffusion models to design context-specific DNA regulatory sequences, which hold significant potential toward enabling novel therapeutic applications requiring precise modulation of gene expression. Our framework uses a cell type-specific diffusion model to generate synthetic 200 bp regulatory elements based on chromatin accessibility across different cell types. We evaluate the generated sequences based on key metrics to ensure they retain properties of endogenous sequences: transcription factor binding site composition, potential for cell type-specific chromatin accessibility, and capacity for sequences generated by DNA diffusion to activate gene expression in different cell contexts using state-of-the-art prediction models. Our results demonstrate the ability to robustly generate DNA sequences with cell type-specific regulatory potential. DNA-Diffusion paves the way for revolutionizing a regulatory modulation approach to mammalian synthetic biology and precision gene therapy.

2.
Chembiochem ; 23(16): e202200209, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35599237

ABSTRACT

To mimic the levels of spatiotemporal control that exist in nature, tools for chemically induced dimerization (CID) are employed to manipulate protein-protein interactions. Although linker composition is known to influence speed and efficiency of heterobifunctional compounds, modeling or in vitro experiments are often insufficient to predict optimal linker structure. This can be attributed to the complexity of ternary complex formation and the overlapping factors that impact the effective concentration of probe within the cell, such as efflux and passive permeability. Herein, we synthesize a library of modular chemical tools with varying linker structures and perform quantitative microscopy in live cells to visualize dimerization in real-time. We use our optimized probe to demonstrate our ability to recruit a protein of interest (POI) to the mitochondria, cell membrane, and nucleus. Finally, we induce and monitor local and global phase separation. We highlight the importance of quantitative approaches to linker optimization for dynamic systems and introduce new, synthetically accessible tools for the rapid control of protein localization.


Subject(s)
Protein Transport , Cell Membrane , Dimerization
3.
Nat Commun ; 10(1): 1012, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30833557

ABSTRACT

Amphiphilicity in ɑ-helical antimicrobial peptides (AMPs) is recognized as a signature of potential membrane activity. Some AMPs are also strongly immunomodulatory: LL37-DNA complexes potently amplify Toll-like receptor 9 (TLR9) activation in immune cells and exacerbate autoimmune diseases. The rules governing this proinflammatory activity of AMPs are unknown. Here we examine the supramolecular structures formed between DNA and three prototypical AMPs using small angle X-ray scattering and molecular modeling. We correlate these structures to their ability to activate TLR9 and show that a key criterion is the AMP's ability to assemble into superhelical protofibril scaffolds. These structures enforce spatially-periodic DNA organization in nanocrystalline immunocomplexes that trigger strong recognition by TLR9, which is conventionally known to bind single DNA ligands. We demonstrate that we can "knock in" this ability for TLR9 amplification in membrane-active AMP mutants, which suggests the existence of tradeoffs between membrane permeating activity and immunomodulatory activity in AMP sequences.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/immunology , Antimicrobial Cationic Peptides/chemistry , DNA/chemistry , Toll-Like Receptor 9/chemistry , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Cell Death/drug effects , Cell Membrane/drug effects , Computer Simulation , DNA/immunology , Humans , Immunologic Factors/chemistry , Immunologic Factors/immunology , Ligands , Macrophages/drug effects , Models, Molecular , Protein Conformation, alpha-Helical/physiology , Scattering, Radiation , Toll-Like Receptor 9/immunology , X-Ray Diffraction , Cathelicidins
SELECTION OF CITATIONS
SEARCH DETAIL
...