Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Entomol ; 55(1): 230-236, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29121250

ABSTRACT

Mosquito surveillance typically uses Centers for Disease Control and Prevention (CDC) mosquito light traps baited with CO2. From January 2013 to March 2015, we sampled seven field sites using three active mosquito-trapping techniques (two different aspirators and a sweep net) and the stationary CO2-baited CDC mosquito light trap to determine mosquito capture efficacy for each technique. Sampling occurred in four suburban backyards and three dog kennel facilities near Gainesville, FL, USA; species collection and relative abundance were measured. A total of 32 species and 70,090 individual mosquitoes were collected, including a new record for Alachua County, Florida, Aedes hendersoni (Cockerell). The dominant (>5% of total capture) mosquito species collected during the study included Aedes atlanticus (Dyar and Knab), Aedes infirmatus (Dyar and Knab), Anopheles crucians Wiedemann, Culiseta melanura (Coquillett), Culex erraticus (Dyar and Knab), Culex nigripalpus Theobald, and Uranotaenia sapphirina (Osten Sacken). The CDC trap captured the most species (29), followed by large aspirator (28), small aspirator (26), and the sweep net (23). All dominant species were captured with each sampling technique. Excluding Wyeomyia mitchellii (Theobald), all subdominant species (1-5% of total capture) were collected with each sampling technique. Future sampling should consider the utility (e.g., large numbers are readily collected) and limitations (e.g., personnel requirements) of aspirator collections when designing field-based mosquito sampling projects, especially those in residential areas or those focused upon species captured.


Subject(s)
Animal Distribution , Culicidae , Entomology/methods , Animals , Female , Florida , Male , Mosquito Control/methods
2.
J Med Entomol ; 51(2): 297-313, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24724278

ABSTRACT

The epidemiology of vector-borne pathogens is determined by mechanisms and interactions at different scales of biological organization, from individual-level cellular processes to community interactions between species and with the environment. Most research, however, focuses on one scale or level with little integration between scales or levels within scales. Understanding the interactions between levels and how they influence our perception of vector-borne pathogens is critical. Here two examples of biological scales (pathogen transmission and mosquito mortality) are presented to illustrate some of the issues of scale and to explore how processes on different levels may interact to influence mosquito-borne pathogen transmission cycles. Individual variation in survival, vector competence, and other traits affect population abundance, transmission potential, and community structure. Community structure affects interactions between individuals such as competition and predation, and thus influences the individual-level dynamics and transmission potential. Modeling is a valuable tool to assess interactions between scales and how processes at different levels can affect transmission dynamics. We expand an existing model to illustrate the types of studies needed, showing that individual-level variation in viral dose acquired or needed for infection can influence the number of infectious vectors. It is critical that interactions within and among biological scales and levels of biological organization are understood for greater understanding of pathogen transmission with the ultimate goal of improving control of vector-borne pathogens.


Subject(s)
Communicable Diseases/transmission , Culicidae , Insect Vectors , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...