Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 41(7): 1613-1622, 2022 07.
Article in English | MEDLINE | ID: mdl-35394645

ABSTRACT

Biomimetic extraction using solid-phase microextraction is a passive sampling analytical method that can predict the aquatic toxicity of complex petroleum substances. The method provides a nonanimal alternative to traditional bioassays with the potential to reduce both vertebrate and invertebrate aquatic toxicity testing. The technique uses commercially available polydimethylsiloxane-coated fibers that, following nondepletive extraction of water samples, are injected into a gas chromatograph with flame ionization detection. As the predictive nature of the method is operationally defined, it is critical that its application be harmonized with regard to extraction, analysis, and standardization parameters. Results are presented from a round robin program comparing the results from 10 laboratories analyzing four different sample sets of dissolved organics in water. Samples included two incurred oil sands process-affected waters and a cracked gas oil water accommodated fraction. A fourth sample of cracked gas oil blended in an oil sands process-affected water was analyzed to demonstrate the method's ability to differentiate between neutral and ionizable dissolved hydrocarbons. Six of the 10 laboratories applied an automated version of the method using a robotic autosampler where the critical extraction steps are precisely controlled and which permits batch screening of water samples for aquatic toxicity potential. The remaining four laboratories performed the solid-phase microextraction manually. The automated method demonstrated good reproducibility with between-laboratory variability across the six laboratories and four samples yielding a mean relative standard deviation of 14%. The corresponding between-laboratory variability across the four laboratories applying the manual extraction was 53%, demonstrating the importance of precisely controlling the extraction procedure. Environ Toxicol Chem 2022;41:1613-1622. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Oil and Gas Fields , Water Pollutants, Chemical , Biomimetics/methods , Reproducibility of Results , Water/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
Environ Toxicol Chem ; 38(6): 1302-1312, 2019 06.
Article in English | MEDLINE | ID: mdl-30919522

ABSTRACT

The Organisation for Economic Co-operation and Development (OECD) test guideline 236 (fish embryo acute toxicity test; 2013) relies on 4 endpoints to describe exposure-related effects (coagulation, lack of somite formation, tail-bud detachment from the yolk sac, and the presence of a heartbeat). Danio rerio (zebrafish) embryos were used to investigate these endpoints along with a number of additional sublethal effects (cardiac dysfunction, pericardial edema, yolk sac edema, tail curvature, hatch success, pericardial edema area, craniofacial malformation, swim bladder development, fin development, and heart rate) following 5-d exposures to 7 petroleum substances. The substances investigated included 2 crude oils, 3 gas oils, a diluted bitumen, and a petrochemical containing a mixture of branched alcohols. Biomimetic extraction-solid-phase microextraction (BE-SPME) was used to quantify freely dissolved concentrations of test substances as the exposure metric. The results indicated that the most prevalent effects observed were pericardial and yolk sac edema, tail curvature, and lack of embryo viability. A BE-SPME threshold was determined to characterize sublethal morphological alterations that preceded embryo mortality. Our results aid in the understanding of aquatic hazards of petroleum substances to developing zebrafish beyond traditional OECD test guideline 236 endpoints and show the applicability of BE-SPME as a simple analytical tool that can be used to predict sublethal embryo toxicity. Environ Toxicol Chem 2019;38:1302-1312. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Subject(s)
Ecotoxicology , Embryo, Nonmammalian/drug effects , Environmental Exposure/analysis , Petroleum/toxicity , Zebrafish/embryology , Animals , Embryonic Development/drug effects , Toxicity Tests, Acute , Water Pollutants, Chemical/toxicity
3.
Chemosphere ; 150: 416-423, 2016 May.
Article in English | MEDLINE | ID: mdl-26924078

ABSTRACT

Aqueous solubility is a fundamental physical-chemical substance property that strongly influences the distribution, fate and effects of chemicals upon release into the environment. Experimental water solubility was determined for 18 selected C9-C18 normal, branched and cyclic alkanes. A slow-stir technique was applied to obviate emulsion formation, which historically has resulted in significant overestimation of the aqueous solubility of such hydrophobic liquid compounds. Sensitive GC-MS based methods coupled with contemporary sample extraction techniques were employed to enable reproducible analysis of low parts-per billion aqueous concentrations. Water solubility measurements for most of the compounds investigated, are reported for the first time expanding available data for branched and cyclic alkanes. Measured water solubilities spanned four orders of magnitude ranging from 0.3 µg/L to 250 µg/L. Good agreement was observed for selected alkanes tested in this work and reported in earlier literature demonstrating the robustness of the slow-stir water solubility technique. Comparisons of measured alkane water solubilities were also made with those predicted by commonly used quantitative structure-property relationship models (e.g. SPARC, EPIWIN, ACD/Labs). Correlations are also presented between alkane measured water solubilities and molecular size parameters (e.g. molar volume, solvent accessible molar volume) affirming a mechanistic description of empirical aqueous solubility results and prediction previously reported for a more limited set of alkanes.


Subject(s)
Alkanes/chemistry , Models, Theoretical , Solvents/chemistry , Water/chemistry , Hydrophobic and Hydrophilic Interactions , Quantitative Structure-Activity Relationship , Solubility
4.
J Agric Food Chem ; 63(31): 6866-75, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26230997

ABSTRACT

Components of emulsifiable concentrates (ECs) used in pesticide formulations may be emitted to air following application in agricultural use and contribute to ozone formation. A key consideration is the fraction of the ECs that is volatilized. This study is designed to provide a mechanistic model framework for estimating emissions of an aromatic hydrocarbon fluid used in ECs based on the results of spray chamber experiments that simulate fate as the fluids become subject to volatilization, sorption to soil, and biodegradation. The results indicate the need to treat the volatilization losses in three stages: (i) losses during spraying, (ii) losses up to 12 h after spraying in which the soil is coated with the ECs, and (iii) subsequent longer term losses in which the ECs become increasingly sorbed and subject to biodegradation. A mass balance model, the agrochemical derived volatile organic compound air transfer evaluation (ADVOCATE) tool, is developed, treating the ECs as seven hydrocarbon component groups, to estimate the volatilization and biodegradation losses using parameters fitted to empirical data. This enables losses to be estimated for each hydrocarbon component under field conditions, thereby providing a basis for improved estimation of ozone formation potential and for designing ECs that have lower emissions.


Subject(s)
Hydrocarbons, Aromatic/chemistry , Pesticides/chemistry , Soil Pollutants/chemistry , Agriculture , Kinetics , Models, Theoretical , Volatilization
5.
Environ Toxicol Chem ; 26(11): 2317-31, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17941743

ABSTRACT

The target lipid model (TLM) was applied to literature data from 10 microbial toxicity assays to provide a quantitative effects assessment framework for wastewater treatment plant organisms. For the nonpolar organic chemicals considered, linear relationships between the logarithm of the median effect concentrations (EC50) and log(K(OW)) conformed to the TLM for all endpoints with the exception of nitrification inhibition. Additional experimental data for the nitrification inhibition endpoint were generated for 16 narcotic chemicals using a procedure that allowed testing of volatile substances. Results obtained from the present study demonstrated that the nitrification inhibition endpoint was not adequately described by the TLM consistent with previous literature data. Acute to chronic ratios (ACRs) defined as the ratio of the EC50 to the 10% effect concentration (EC10) were available for two of the endpoints investigated and ranged from 1.1 to 2.3 for the Tetrahymena growth assay and from 2.4 to 24.1 for the nitrification inhibition endpoint. No inhibitory effects for any of the microbial endpoints investigated were observed for compounds with log(K(OW)) >5. The critical target lipid body burdens (C(L)(*)) were calculated for the nine microbial toxicity endpoints conforming to the TLM and ranged from 252 to 2,250 micromol/g octanol. The Microtox light inhibition (C(L)(*) = 252 micromol/g octanol) and Tetrahymena pyriformis growth (C(L)(*) = 254 micromol/g octanol) assays were found to be the most sensitive endpoints. The predicted no-effect concentration (PNEC) derived using the HC5 (hazardous concentration to 5% of test organisms) statistical extrapolation procedure was calculated using TLM parameters for substances with log(K(OW)) from 0 to 5. Results from this analysis demonstrate PNECs for narcotic compounds are protective of wastewater organisms excluding nitrifying bacteria. Further model improvement is needed if protection of nitrifying bacteria in wastewater treatment systems is required.


Subject(s)
Bacteria/drug effects , Lipid Metabolism/drug effects , Tetrahymena pyriformis/drug effects , Toxicity Tests , Water Pollutants, Chemical/toxicity , Algorithms , Animals , Bacteria/metabolism , Lipid Metabolism/physiology , Models, Biological , Nitrites/chemistry , Nitrites/metabolism , No-Observed-Adverse-Effect Level , Risk Assessment , Tetrahymena pyriformis/growth & development
6.
Chemosphere ; 48(3): 257-65, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12146613

ABSTRACT

Experimental data are presented for 11 C8-C15 aliphatic alcohols and 12 phthalate and adipate diesters using a slow-stir water solubility test method. The slow stirring method provides more reliable water solubility measurements for these liquid substances than previous studies since the formation of emulsions is avoided. Because the solubility of these chemicals spanned a range of more than six orders of magnitude, several different analytical procedures were employed. The water solubility data reported in this work agree well with other recently reported slow-stir measurements and with structure-property model predictions (SPARC and WSKOWWIN).


Subject(s)
Adipates/chemistry , Alcohols/chemistry , Phthalic Acids/chemistry , Esters/chemistry , Models, Theoretical , Solubility , Water Movements , Water Pollutants
SELECTION OF CITATIONS
SEARCH DETAIL
...