Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Photomed Laser Surg ; 24(2): 121-8, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16706690

ABSTRACT

This review presents current research on the use of far-red to near-infrared (NIR) light treatment in various in vitro and in vivo models. Low-intensity light therapy, commonly referred to as "photobiomodulation," uses light in the far-red to near-infrared region of the spectrum (630-1000 nm) and modulates numerous cellular functions. Positive effects of NIR-light-emitting diode (LED) light treatment include acceleration of wound healing, improved recovery from ischemic injury of the heart, and attenuated degeneration of injured optic nerves by improving mitochondrial energy metabolism and production. Various in vitro and in vivo models of mitochondrial dysfunction were treated with a variety of wavelengths of NIR-LED light. These studies were performed to determine the effect of NIR-LED light treatment on physiologic and pathologic processes. NIRLED light treatment stimulates the photoacceptor cytochrome c oxidase, resulting in increased energy metabolism and production. NIR-LED light treatment accelerates wound healing in ischemic rat and murine diabetic wound healing models, attenuates the retinotoxic effects of methanol-derived formic acid in rat models, and attenuates the developmental toxicity of dioxin in chicken embryos. Furthermore, NIR-LED light treatment prevents the development of oral mucositis in pediatric bone marrow transplant patients. The experimental results demonstrate that NIR-LED light treatment stimulates mitochondrial oxidative metabolism in vitro, and accelerates cell and tissue repair in vivo. NIR-LED light represents a novel, noninvasive, therapeutic intervention for the treatment of numerous diseases linked to mitochondrial dysfunction.


Subject(s)
Infrared Rays/therapeutic use , Wound Healing/radiation effects , Animals , Chick Embryo , Humans , In Vitro Techniques , Mice , Mitochondria/metabolism , Myocardial Ischemia/radiotherapy , Oxidation-Reduction/radiation effects , Rats
2.
J Allergy Clin Immunol ; 116(6): 1334-42, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16337468

ABSTRACT

Defense against biothreat agents requires a broad-spectrum approach. Modulation of the innate immune system might fulfill this requirement. Hackett's previous review of innate immune activation as a broad-spectrum biodefense strategy identified several unresolved questions. The current article is a systematic approach to answering those questions with the focused participation of research groups developing this technology. Our team of academic and industry participants reviewed the promising agents and came to the following conclusions. It is feasible to construct a biodefense platform combining synergistic agents that activate the innate immune system against a broad range of pathogens on the basis of conserved microbial components by using a nasal spray for immune activation in the respiratory and gastrointestinal tracts because these are the most likely routes of attack. It might also be possible to include agents that inhibit molecular events leading to septic shock. Innate immune-activating agents designed to activate Toll-like and other receptors will probably provide protection against the biothreat pathogen spectrum for periods ranging from 2 to 14 days for IFNs up to 26 weeks for immunomodulatory oligonucleotides. Initial treatment is proposed on the first index case or biosensor alert. Boost doses would be required. Harmful inflammation is possible, but thus far, only transient fever has been observed. Autoimmune reaction and retroviral activation have not been seen thus far in preclinical and human trials of many of these compounds. Toll-like receptor agonists caused cytokine production in all subjects tested, but genetic polymorphism reduced the response to IFN in African American subjects.


Subject(s)
Immunity, Innate , Aminoquinolines/pharmacology , Animals , Humans , Imidazoles/pharmacology , Imiquimod , Immunity, Innate/drug effects , Immunity, Innate/immunology , Oligodeoxyribonucleotides/pharmacology , Toll-Like Receptor 4/agonists , Toll-Like Receptor 9/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...