Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oecologia ; 177(3): 761-773, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25413866

ABSTRACT

Phenology often determines the outcome of interspecific interactions, where early-arriving species often dominate interactions over those arriving later. The effects of phenology on species interactions are especially pronounced in aquatic systems, but the evidence is largely derived from experimental studies. We examined whether differences in breeding phenology between two pond-breeding salamanders (Ambystoma annulatum and A. maculatum) affected metamorph recruitment and demographic traits within natural populations, with the expectation that the fall-breeding A. annulatum would negatively affect the spring-breeding A. maculatum. We monitored populations of each species at five ponds over 4 years using drift fences. Metamorph abundance and survival of A. annulatum were affected by intra- and interspecific processes, whereas metamorph size and date of emigration were primarily influenced by intraspecific effects. Metamorph abundance, snout-vent length, date of emigration and survival for A. maculatum were all predicted by combinations of intra- and interspecific effects, but often showed negative relationships with A. annulatum metamorph traits and abundance. Size and date of metamorphosis were strongly correlated within each species, but in opposite patterns (negative for A. annulatum and positive for A. maculatum), suggesting that the two species use alternative strategies to enhance terrestrial survival and that these factors may influence their interactions. Our results match predictions from experimental studies that suggest recruitment is influenced by intra- and interspecific processes which are determined by phenological differences between species. Incorporating spatiotemporal variability when modeling population dynamics is necessary to understand the importance of phenology in species interactions, especially as shifts in phenology occur under climate change.


Subject(s)
Ambystoma/physiology , Climate Change , Ecosystem , Metamorphosis, Biological , Ponds , Reproduction , Seasons , Ambystoma/classification , Animals , Breeding , Population Dynamics , Species Specificity , Urodela/physiology
2.
Ecol Appl ; 18(2): 283-9, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18488596

ABSTRACT

Numerous studies have documented the decline of amphibians following timber harvest. However, direct evidence concerning the mechanisms of population decline is lacking and hinders attempts to develop conservation or recovery plans and solutions for forest species. We summarized the mechanisms by which abundance of amphibians may initially decline following timber harvest into three testable hypotheses: (1) mortality, (2) retreat, and (3) evacuation. Here, we tested the evacuation hypothesis within a large-scale, replicated experiment. We used drift fences with pitfall traps to capture pond-breeding amphibians moving out of experimental clearcut quadrants and into control quadrants at four replicate arrays located within the Daniel Boone Conservation Area on the upper Ozark Plateau in Warren County, Missouri, USA. During the preharvest year of 2004, only 51.6% of the 312 individuals captured were moving out of pre-clearcut quadrants, and movement did not differ from random. In contrast, during both postharvest years of 2005 and 2006, the number of captures along the quadrant edge increased, and a higher proportion of individuals (59.9% and 56.6%, respectively, by year) were moving out of clearcut quadrants than entering. Salamanders moved out of clearcuts in large percentages (Ambystoma annulatum, 78.2% in 2005, 78.2% in 2006; A. maculatum, 64.0% in 2005, 57.1% in 2006). Frogs and toads also moved out of clearcut quadrants, but in lower percentages (Bufo americanus, 59.6% in 2005, 53.3% in 2006; Rana clamitans, 52.7% in 2006). Salamanders moved out of clearcuts with low-wood treatments more than out of clearcuts with high-wood treatments. Movement of salamanders out of clearcuts was independent of sex. Estimated movement out of clearcuts represented between 8.7% and 35.0% of the total breeding adults captured for two species of salamanders. Although we recognize that some portion of the amphibian population may retreat underground for short periods and others may not survive the effects of timber harvest, these data are the first direct evidence showing that individuals are capable of leaving clearcuts and shifting habitat use.


Subject(s)
Ambystoma/physiology , Bufonidae/physiology , Forestry , Fresh Water , Ranidae/physiology , Reproduction/physiology , Animals , Conservation of Natural Resources , Ecosystem , Missouri
SELECTION OF CITATIONS
SEARCH DETAIL
...