Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 296: 100345, 2021.
Article in English | MEDLINE | ID: mdl-33515548

ABSTRACT

G-protein-coupled receptors (GPCRs) are traditionally known for signaling at the plasma membrane, but they can also signal from endosomes after internalization to control important pathophysiological processes. In spinal neurons, sustained endosomal signaling of the neurokinin 1 receptor (NK1R) mediates nociception, as demonstrated in models of acute and neuropathic pain. An NK1R antagonist, Spantide I (Span), conjugated to cholestanol (Span-Chol), accumulates in endosomes, inhibits endosomal NK1R signaling, and causes prolonged antinociception. However, the extent to which the Chol-anchor influences long-term location and activity is poorly understood. Herein, we used fluorescent correlation spectroscopy and targeted biosensors to characterize Span-Chol over time. The Chol-anchor increased local concentration of probe at the plasma membrane. Over time we observed an increase in NK1R-binding affinity and more potent inhibition of NK1R-mediated calcium signaling. Span-Chol, but not Span, caused a persistent decrease in NK1R recruitment of ß-arrestin and receptor internalization to early endosomes. Using targeted biosensors, we mapped the relative inhibition of NK1R signaling as the receptor moved into the cell. Span selectively inhibited cell surface signaling, whereas Span-Chol partitioned into endosomal membranes and blocked endosomal signaling. In a preclinical model of pain, Span-Chol caused prolonged antinociception (>9 h), which is attributable to a three-pronged mechanism of action: increased local concentration at membranes, a prolonged decrease in NK1R endocytosis, and persistent inhibition of signaling from endosomes. Identifying the mechanisms that contribute to the increased preclinical efficacy of lipid-anchored NK1R antagonists is an important step toward understanding how we can effectively target intracellular GPCRs in disease.


Subject(s)
Analgesics/pharmacology , Cholestanol/pharmacology , Neurokinin-1 Receptor Antagonists/pharmacology , Pain/drug therapy , Substance P/analogs & derivatives , Analgesics/chemistry , Analgesics/therapeutic use , Animals , Cell Membrane/drug effects , Cell Membrane/metabolism , Cholestanol/analogs & derivatives , Cholestanol/therapeutic use , Endosomes/drug effects , Endosomes/metabolism , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Neurokinin-1 Receptor Antagonists/chemistry , Neurokinin-1 Receptor Antagonists/therapeutic use , Pain/metabolism , Pain Management , Substance P/chemistry , Substance P/pharmacology , Substance P/therapeutic use
2.
Future Med Chem ; 13(1): 63-90, 2021 01.
Article in English | MEDLINE | ID: mdl-33319586

ABSTRACT

G protein-coupled receptors (GPCRs) are essential signaling proteins and tractable therapeutic targets. To develop new drug candidates, GPCR drug discovery programs require versatile, sensitive pharmacological tools for ligand binding and compound screening. With the availability of new imaging modalities and proximity-based ligand binding technologies, fluorescent ligands offer many advantages and are increasingly being used, yet labeling small molecules remains considerably more challenging relative to peptides. Focusing on recent fluorescent small molecule studies for family A GPCRs, this review addresses some of the key challenges, synthesis approaches and structure-activity relationship considerations, and discusses advantages of using high-resolution GPCR structures to inform conjugation strategies. While no single approach guarantees successful labeling without loss of affinity or selectivity, the choice of fluorophore, linker type and site of attachment have proved to be critical factors that can significantly affect their utility in drug discovery programs, and as discussed, can sometimes lead to very unexpected results.


Subject(s)
Buprenorphine/chemistry , Fatty Acids/chemistry , Fluorescent Dyes/chemistry , Morphine/chemistry , Oxytocin/chemistry , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Amino Acid Sequence , Binding Sites , Buprenorphine/metabolism , Crystallization , Drug Evaluation, Preclinical , Fatty Acids/metabolism , Fluorescence Resonance Energy Transfer , Humans , Ligands , Morphine/metabolism , Optical Imaging , Oxytocin/metabolism , Protein Binding , Protein Conformation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...