Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Skin Wound Care ; 28(2): 59-68, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25608011

ABSTRACT

OBJECTIVE: Deep tissue injury (DTI) is caused by prolonged mechanical loading that disrupts blood flow and metabolic clearance. A patient simulator that mimics the biomechanical aspects of DTI initiation, stress and strain in deep muscle tissue, would be potentially useful as a training tool for pressure-relief techniques and testing platform for pressure-mitigating products. As a step toward this goal, this study evaluates the ability of silicone materials to mimic the distribution of stress in muscle tissue under concentrated loading. METHODS: To quantify the mechanical properties of candidate silicone materials, unconfined compression experiments were conducted on 3 silicone formulations (Ecoflex 0030, Ecoflex 0010, and Dragon Skin; Smooth-On, Inc, Easton, Pennsylvania). Results were fit to an Ogden hyperelastic material model, and the resulting shear moduli (G) were compared with published values for biological tissues. Indentation tests were then conducted on Ecoflex 0030 and porcine muscle to investigate silicone's ability to mimic the nonuniform stress distribution muscle demonstrates under concentrated loading. Finite element models were created to quantify stresses throughout tissue depth. Finally, a preliminary patient simulator prototype was constructed, and both deep and superficial "tissue" pressures were recorded to examine stress distribution. RESULTS: Indentation tests showed similar stress distribution trends in muscle and Ecoflex 0030, but stress magnitudes were higher in Ecoflex 0030 than in porcine muscle. All 3 silicone formulations demonstrated shear moduli within the range of published values for biological tissue. For the experimental conditions reported in this work, Ecoflex 0030 exhibited greater stiffness than porcine muscle. CONCLUSION: Indentation tests and the prototype patient simulator trial demonstrated similar trends with high pressures closest to the bony prominence with decreasing magnitude toward the interfacial surface. Qualitatively, silicone mimicked the phenomenon observed in muscle of nonuniform stress under concentrated loading. Although shear moduli were within biological ranges, stress and stiffness values exceeded those of porcine muscle. This research represents a first step toward development of a preclinical model simulating the biomechanical conditions of stress and strain in deep muscle, since local biomechanical factors are acknowledged to play a role in DTI initiation. Future research is needed to refine the capacity of preclinical models to simulate biomechanical parameters in successive tissue layers of muscle, fat, dermis, and epidermis typically intervening between bone and support surfaces, for body regions at risk for DTI.


Subject(s)
Models, Biological , Pressure Ulcer/therapy , Silicones/chemistry , Animals , Biomechanical Phenomena , Humans , Muscle, Skeletal/injuries , Pressure , Pressure Ulcer/etiology , Skin/injuries , Swine
2.
J Multidiscip Healthc ; 7: 111-7, 2014.
Article in English | MEDLINE | ID: mdl-24596466

ABSTRACT

Comprehensive care of chronic venous insufficiency and associated ulcers requires a multipronged and interprofessional approach to care. A comprehensive treatment approach includes exercise, nutritional assessment, compression therapy, vascular reconstruction, and advanced treatment modalities. National guidelines, meta-analyses, and original research studies provide evidence for the inclusion of these approaches in the patient plan of care. The purpose of this paper is to review present guidelines for prevention and treatment of venous leg ulcers as followed in the US. The paper further explores evidence-based yet pragmatic tools for the interprofessional team to use in the management of this complex disorder.

SELECTION OF CITATIONS
SEARCH DETAIL
...