Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 354(1389): 1513-22, 1999 Sep 29.
Article in English | MEDLINE | ID: mdl-10582237

ABSTRACT

Our studies of the yeast ubiquitin-proteasome pathway have uncovered a number of general principles that govern substrate selectivity and proteolysis in this complex system. Much of the work has focused on the destruction of a yeast transcription factor, MAT alpha 2. The alpha 2 protein is polyubiquitinated and rapidly degraded in alpha-haploid cells. One pathway of proteolytic targeting, which depends on two distinct endoplasmic reticulum-localized ubiquitin-conjugating enzymes, recognizes the hydrophobic face of an amphipathic helix in alpha 2. Interestingly, degradation of alpha 2 is blocked in a/alpha-diploid cells by heterodimer formation between the alpha 2 and a1 homeodomain proteins. The data suggest that degradation signals may overlap protein-protein interaction surfaces, allowing a straightforward steric mechanism for regulated degradation. Analysis of alpha 2 degradation led to the identification of both 20S and 26S proteasome subunits, and several key features of proteasome assembly and active-site formation were subsequently uncovered. Finally, it has become clear that protein (poly) ubiquitination is highly dynamic in vivo, and our studies of yeast de-ubiquitinating enzymes illustrate how such enzymes can facilitate the proteolysis of diverse substrates.


Subject(s)
Cysteine Endopeptidases/metabolism , Multienzyme Complexes/metabolism , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae/enzymology , Ubiquitins/metabolism , Amino Acid Sequence , Biopolymers/metabolism , Fungal Proteins/metabolism , Humans , Intramolecular Transferases , Molecular Sequence Data , Polyubiquitin , Proteasome Endopeptidase Complex
SELECTION OF CITATIONS
SEARCH DETAIL
...