Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Forensic Sci Int Genet ; 44: 102186, 2020 01.
Article in English | MEDLINE | ID: mdl-31677444

ABSTRACT

The value of the evidence depends critically on propositions. In the second of two papers intended to provide advice to the community on difficult aspects of evaluation and the formulation of propositions, we focus primarily on activity level propositions. This helps the court address the question of "How did an individual's cell material get there?". In order to do this, we expand the framework outlined in the first companion paper. First, it is important not to conflate results and propositions. Statements given activity level propositions aim to help address issues of indirect vs direct transfer, and the time of the activity, but it is important to avoid use of the word 'transfer' in propositions. This is because propositions are assessed by the Court, but DNA transfer is a factor that scientists need to take into account for the interpretation of their results. Suitable activity level propositions are ideally set before knowledge of the results and address issues like: X stabbed Y vs. an unknown person stabbed Y but X met Y the day before. The scientist assigns the probability of the evidence, if each of the alternate propositions is true, to derive a likelihood ratio. To do this, the scientist asks: a) "what are the expectations if each of the propositions is true?" b) "What data are available to assist in the evaluation of the results given the propositions?" When presenting evidence, scientists work within the hierarchy of propositions framework. The value of evidence calculated for a DNA profile cannot be carried over to higher levels in the hierarchy - the calculations given sub-source, source and activity level propositions are all separate. A number of examples are provided to illustrate the principles espoused, and the criteria that such assessments should meet. Ideally in order to assign probabilities, the analyst should have/collect data that are relevant to the case in question. These data must be relevant to the case at hand and we encourage further research and collection of data to form knowledge bases. Bayesian Networks are extremely useful to help us think about a problem, because they force us to consider all relevant possibilities in a logical way. An example is provided.


Subject(s)
Forensic Genetics/legislation & jurisprudence , Advisory Committees , Bayes Theorem , Communication , DNA Fingerprinting/legislation & jurisprudence , Expert Testimony/legislation & jurisprudence , Humans , Likelihood Functions , Professional Role , Reproducibility of Results , Societies, Scientific , Terminology as Topic
2.
Forensic Sci Int Genet ; 36: 189-202, 2018 09.
Article in English | MEDLINE | ID: mdl-30041098

ABSTRACT

The interpretation of evidence continues to be one of the biggest challenges facing the forensic community. This is the first of two papers intended to provide advice on difficult aspects of evaluation and in particular on the formulation of propositions. The scientist has a dual role: investigator (crime-focused), where often there is no suspect available and a database search may be required; evaluator (suspect-focused), where the strength of evidence is assessed in the context of the case. In investigative mode, generally the aim is to produce leads regarding the source of the DNA. Sub-source level propositions will be adequate to help identify potential suspects who can be further investigated by the authorities. Once in evaluative mode, given the defence version of events of the person of interest, it may become necessary to consider alternatives that go beyond the source of the DNA (i.e., to consider activity level propositions). In the evaluation phase, it is crucial that formulation of propositions allows the assessment of all the results that will help with the issue at hand. Propositions should therefore be precise (indication of the number of contributors, information on the relevant population etc.), be about causes, not effects (e.g. a 'matching' DNA profile) and to avoid bias, must not be findings-led. This means that ideally, propositions should be decided based on the case information and before the results of the comparisons are known. This paper primarily reflects upon what has been coined as "sub-source level propositions". These are restricted to the evaluation of the DNA profiles themselves, and help answer the issue regarding the source of the DNA. It is to be emphasised that likelihood ratios given sub-source level propositions cannot be carried over to a different level - for example, activity level propositions, where the DNA evidence is put into the context of the alleged activities. This would be highly misleading and could give rise to miscarriages of justice; this will be discussed in a second paper. The value of forensic results depends not only on propositions, but also on the type of results (e.g. allelic designations, peak heights, replicates) and upon the model used: it is therefore important to discuss these aspects. Finally, since communication is key to help understanding by courts, we will explore how to convey the value of the results and explain the importance of avoiding the practice of transposing the conditional.


Subject(s)
DNA Fingerprinting/standards , Forensic Genetics/standards , DNA/analysis , Genetics, Population , Humans , Likelihood Functions , Microsatellite Repeats , Models, Statistical , Pedigree , Professional Role , Societies, Scientific
SELECTION OF CITATIONS
SEARCH DETAIL
...