Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cutan Ocul Toxicol ; 39(2): 143-157, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32321319

ABSTRACT

Reactive Skin Decontamination Lotion (RSDL®) is an FDA-approved skin decontamination kit carried by service members for removal and neutralisation of vesicants and nerve agents. The RSDL kit, comprised of a lotion-impregnated sponge, was shown to be the superior medical decontamination device for chemical warfare agent (CWA) exposure on intact skin. In the event of a chemical exposure situation (i.e. terrorism, battlefield) physical injuries are probable, and preservation of life will outweigh the risk associated with application of RSDL to compromised skin. The purpose of this study was to quantify the rate and quality of wound healing in epidermal skin wounds treated with RSDL in a porcine model. Degree of wound healing was assessed using bioengineering methods to include ballistometry, colorimetry, evaporimetry, and high-frequency ultrasonography. Clinical observation, histopathology and immunohistochemistry were also utilised. All pigs received four bilateral superficial abdominal wounds via a pneumatic dermatome on their ventral abdomen, then were treated with the following dressings over a seven-day period: RSDL sponge, petroleum based Xeroform® gauze, 3 M™ Tegaderm™ Film, and 3 M™ Tegaderm™ Foam. Two additional non-wounded sites on the flank were used as controls. Two groups of pigs were then evaluated for a 21- or 56-day time period, representing short- and long-term wound-healing progression. Our findings indicated RSDL had a negative impact on wound-healing progression at both 21 and 56 days post-injury. Wounds receiving RSDL demonstrated a decreased skin elasticity, significant transepidermal water loss, and altered skin colouration and thickness. In addition, the rate of wound healing was delayed, and return to a functional skin barrier was altered when compared to non-RSDL-treated wounds. In conclusion, wound management care and clinical therapeutic intervention plans should be established to account for a prolonged duration of healing in patients with RSDL-contaminated wounds.


Subject(s)
Decontamination/methods , Skin Cream/therapeutic use , Wound Healing/drug effects , Animals , Bandages , Chemical Warfare Agents , Female , Models, Animal , Skin/pathology , Swine , Swine, Miniature
2.
Sensors (Basel) ; 20(5)2020 Feb 27.
Article in English | MEDLINE | ID: mdl-32120873

ABSTRACT

A prototype aerosol detection system is presented that is designed to accurately and quickly measure the concentration of selected inorganic ions in the atmosphere. The aerosol detection system combines digital microfluidics technology, aerosol impaction and chemical detection integrated on the same chip. Target compounds are the major inorganic aerosol constituents: sulfate, nitrate and ammonium. The digital microfluidic system consists of top and bottom plates that sandwich a fluid layer. Nozzles for an inertial impactor are built into the top plate according to known, scaling principles. The deposited air particles are densely concentrated in well-defined deposits on the bottom plate containing droplet actuation electrodes of the chip in fixed areas. The aerosol collection efficiency for particles larger than 100 nm in diameter was higher than 95%. After a collection phase, deposits are dissolved into a scanning droplet. Due to a sub-microliter droplet size, the obtained extract is highly concentrated. Droplets then pass through an air/oil interface on chip for colorimetric analysis by spectrophotometry using optical fibers placed between the two plates of the chip. To create a standard curve for each analyte, six different concentrations of liquid standards were chosen for each assay and dispensed from on-chip reservoirs. The droplet mixing was completed in a few seconds and the final droplet was transported to the detection position as soon as the mixing was finished. Limits of detection (LOD) in the final droplet were determined to be 11 ppm for sulfate and 0.26 ppm for ammonium. For nitrate, it was impossible to get stable measurements. The LOD of the on-chip measurements for sulfate was close to that obtained by an off-chip method using a Tecan spectrometer. LOD of the on-chip method for ammonium was about five times larger than what was obtained with the off-chip method. For the current impactor collection air flow (1 L/min) and 1 hour collection time, the converted LODs in air were: 0.275 for sulfate, 6.5 for ammonium, sufficient for most ambient air monitoring applications.

3.
J Clin Microbiol ; 55(2): 519-525, 2017 02.
Article in English | MEDLINE | ID: mdl-27927919

ABSTRACT

The Shiga Toxin Direct molecular assay (ST Direct) relies on nucleic acid amplification and solid array-based amplicon detection to identify Shiga toxin-producing Escherichia coli (STEC) in preserved stool specimens. Genes encoding Shiga toxin (stx1 and stx2), as well as the E. coli serotype O:157-specific marker rfbE, are simultaneously detected within 2 h. ST Direct was evaluated using 1,084 prospectively collected preserved stool specimens across five clinical centers. An additional 55 retrospectively collected, frozen specimens were included to increase the number of positive specimens evaluated. Results were compared to results from routine culture and an enzyme immunoassay (EIA) specific for the recovery and identification of STEC. ST Direct was found to be 93.2% sensitive and 99.3% specific for detection of stx1 and stx2 and 95.7% sensitive and 99.3% specific for detection of E. coli serotype O:157. All specimens with false-positive results were found to contain stx1 or stx2 or were found to be positive for serotype O:157 when analyzed using alternative molecular methods. All 4 false-negative stx1 or stx2 results were reported for frozen, retrospectively tested specimens. In all cases, the specimens tested positive for stx by an alternative FDA-cleared nucleic acid amplification test (NAAT) but were negative for stx1 and stx2 following nucleic acid sequence analysis. Based on these data, culture and EIA-based methods for detection of STEC are only 33% sensitive compared to molecular tests. A retrospective cost analysis demonstrated 59% of the cost of routine stool culture to be attributable to the identification of STEC. Taken together, these data suggest that ST Direct may provide a cost-effective, rapid molecular alternative to routine culture for the identification of STEC in preserved stool specimens.


Subject(s)
Costs and Cost Analysis , Escherichia coli Infections/diagnosis , Feces/microbiology , Molecular Diagnostic Techniques/economics , Molecular Diagnostic Techniques/methods , Shiga Toxin/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification , Bacteriological Techniques/methods , Carbohydrate Epimerases/genetics , Humans , Immunoenzyme Techniques/methods , Prospective Studies , Retrospective Studies , Sensitivity and Specificity , Shiga-Toxigenic Escherichia coli/genetics , Time Factors , Transaminases/genetics
4.
Sci Total Environ ; 568: 391-401, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27304373

ABSTRACT

In recent years, brown carbon (BrC) has been shown to be an important contributor to light absorption by biomass-burning atmospheric aerosols in the blue and near-ultraviolet (UV) part of the solar spectrum. Emission factors and optical properties of 113 polycyclic aromatic hydrocarbons (PAHs) were determined for combustion of five globally important fuels: Alaskan, Siberian, and Florida swamp peat, cheatgrass (Bromus tectorum), and ponderosa pine (Pinus ponderosa) needles. The emission factors of total analyzed PAHs were between 1.9±0.43.0±0.6 and 9.6±1.2-42.2±5.4mgPAHkg(-1)fuel for particle- and gas phase, respectively. Spectrophotometric analysis of the identified PAHs showed that perinaphthenone, methylpyrenes, and pyrene contributed the most to the total PAH light absorption with 17.2%, 3.3 to 10.5%, and 7.6% of the total particle-phase PAH absorptivity averaged over analyzed emissions from the fuels. In the gas phase, the top three PAH contributors to BrC were acenaphthylene (32.6%), anthracene (8.2%), and 2,4,5-trimethylnaphthalene (8.0%). Overall, the identified PAHs were responsible for 0.087-0.16% (0.13% on average) and 0.033-0.15% (0.11% on average) of the total light absorption by dichloromethane-acetone extracts of particle and gas emissions, respectively. Toxic equivalency factor (TEF) analysis of 16 PAHs prioritized by the United States Environmental Protection Agency (EPA) showed that benzo(a)pyrene contributed the most to the PAH carcinogenic potency of particle phase emissions (61.8-67.4% to the total carcinogenic potency of Σ16EPA PAHs), while naphthalene played the major role in carcinogenicity of the gas phase PAHs in the biomass-burning emission analyzed here (35.4-46.0% to the total carcinogenic potency of Σ16EPA PAHs). The 16 EPA-prioritized PAHs contributed only 22.1±6.2% to total particle and 23.4±11% to total gas phase PAH mass, thus toxic properties of biomass-burning PAH emissions are most likely underestimated.


Subject(s)
Aerosols/toxicity , Air Pollutants/chemistry , Biomass , Fires , Polycyclic Aromatic Hydrocarbons/chemistry , Absorption, Physicochemical , Aerosols/chemistry , Bromus/chemistry , Light , Pinus ponderosa/chemistry , Plant Leaves/chemistry , Soil/chemistry
5.
J Clin Microbiol ; 53(12): 3922-5, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26468497

ABSTRACT

The AmpliVue HSV 1+2 assay was compared to the ELVIS HSV ID and D(3) Typing Culture System for the qualitative detection and differentiation of herpes simplex virus 1 (HSV-1) and HSV-2 DNA in 1,351 cutaneous and mucocutaneous specimens. Compared to ELVIS, AmpliVue had sensitivities of 95.7 and 97.6% for detecting HSV-1 and HSV-2, respectively. Following arbitration of discordant results by an independent molecular method, the AmpliVue assay had a resolved sensitivity and specificity of 99.2 and 99.7%, respectively, for both HSV-1 and HSV-2, whereas ELVIS had a resolved sensitivity of 87.1% for HSV-1 and 84.5% for HSV-2.


Subject(s)
Herpes Simplex/diagnosis , Herpesvirus 1, Human/isolation & purification , Herpesvirus 2, Human/isolation & purification , Molecular Diagnostic Techniques/methods , Mucous Membrane/virology , Skin/virology , Virus Cultivation/methods , Herpes Simplex/virology , Humans , Sensitivity and Specificity
6.
Proc Combust Inst ; 34(1): 225-232, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23814505

ABSTRACT

An experimental ignition delay time study for the promising biofuel 2-methyl furan (2MF) was performed at equivalence ratios of 0.5, 1.0 and 2.0 for mixtures of 1% fuel in argon in the temperature range 1200-1800 K at atmospheric pressure. Laminar burning velocities were determined using the heat-flux method for mixtures of 2MF in air at equivalence ratios of 0.55-1.65, initial temperatures of 298-398 K and atmospheric pressure. A detailed chemical kinetic mechanism consisting of 2059 reactions and 391 species has been constructed to describe the oxidation of 2MF and is used to simulate experiment. Accurate reproduction of the experimental data has been obtained over all conditions with the developed mechanism. Rate of production and sensitivity analyses have been carried out to identify important consumption pathways of the fuel and key kinetic parameters under these conditions. The reactions of hydrogen atom with the fuel are highlighted as important under all experimental conditions studied, with abstraction by the hydrogen atom promoting reactivity and hydrogen atom addition to the furan ring inhibiting reactivity. This work, to the authors knowledge, is the first to combine theoretical and experimental work to describe the oxidation of any of the alkylated furans. The mechanism developed herein to describe 2MF combustion should also function as a sub-mechanism to describe the oxidation of 2,5-dimethyl furan whilst also providing key insights into the oxidation of this similar biofuel candidate.

7.
Am J Pathol ; 179(6): 2855-65, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21967816

ABSTRACT

Insulin resistance is a defining feature of metabolic syndrome and type 2 diabetes mellitus but also may occur independently of these conditions. Nonalcoholic fatty liver disease (NAFLD), the hepatic manifestation of these disorders, increases the risk of hepatocellular carcinoma (HCC). However, mechanisms linking hyperinsulinemia to NAFLD and HCC require clarification. We describe a novel model of primary insulin resistance and HCC with strong parent-of-origin effects. Male AB6F1 (A/JCr dam × C57BL/6 sire) but not B6AF1 (B6 dam × A/J sire) mice developed spontaneous insulin resistance, NAFLD, and HCC without obesity or diabetes. A survey of mitochondrial, imprinted, and sex-linked traits revealed modest associations with X-linked genes. However, a diet-induced obesity study, including B6.A chromosome substitution-strain (consomic) mice, showed no segregation by sex chromosome. Thus, parent-of-origin effects were specified within the autosomal genome. Next, we interrogated mechanisms of insulin-associated hepatocarcinogenesis. Steatotic hepatocytes exhibited adipogenic transition characterized by vacuolar metaplasia and up-regulation of vimentin, adipsin, fatty acid translocase (CD36), peroxisome proliferator-activated receptor-γ, and related products. This profile was largely recapitulated in insulin-supplemented primary mouse hepatocyte cultures. Importantly, pyruvate kinase M2, a fetal anabolic enzyme implicated in the Warburg effect, was activated by insulin in vivo and in vitro. Thus, our study reveals parent-of-origin effects in heritable insulin resistance, implicating adipogenic transition with acquired anabolic metabolism in the progression from NAFLD to HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Epistasis, Genetic/genetics , Genomic Imprinting/genetics , Insulin Resistance/genetics , Liver Neoplasms/genetics , Adipocytes/pathology , Animals , Cell Transformation, Neoplastic/genetics , Cytokines/metabolism , Disease Models, Animal , Fatty Liver/genetics , Female , Hepatocytes/pathology , Hyperinsulinism/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Non-alcoholic Fatty Liver Disease
8.
J Phycol ; 44(1): 124-31, 2008 Feb.
Article in English | MEDLINE | ID: mdl-27041049

ABSTRACT

A correlation between genome size and cell volume has been observed across diverse assemblages of eukaryotes. We examined this relationship in diatoms (Bacillariophyceae), a phylum in which cell volume is of critical ecological and biogeochemical importance. In addition to testing whether there is a predictive relationship across extant species, we tested whether evolutionary divergences in genome size were correlated with evolutionary divergences in cell size (using independent contrasts). We estimated total DNA content for 16 diatom species using a flow cytometer and estimated cell volumes using critical dimensions with scaling equations. Our independent contrast analyses indicated a significant correlated evolution between genome size and cell volume. We then explored the evolutionary and ecological implications of this evolutionary relationship. Diatom cell volume is an important component of the global carbon cycle; therefore, understanding the mechanisms that drive diatom genome evolution has both evolutionary and ecological importance.

SELECTION OF CITATIONS
SEARCH DETAIL
...