Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 466
Filter
1.
Article in English | MEDLINE | ID: mdl-39375907

ABSTRACT

ABSTRACT: Damage control surgery in trauma prioritizes patient stabilization through an initial temporizing surgical approach to rapidly control hemorrhage and contamination, minimizing intraoperative time to allow for resuscitation and the correction of hypothermia, coagulopathy, and acidosis in the intensive care unit. This is followed by definitive repair of injuries once physiological parameters have improved. While damage control techniques for traumatic intra-abdominal and extremity injuries are well established and frequently utilized, the same cannot be said for damage control thoracic surgery. The complexity of thoracic injuries, the intricate decision making process, the level of surgical expertise required, and potential complications make damage control thoracic surgery particularly challenging. However, advances in surgical techniques, improvements in perioperative care, and the emergence of adjuncts such as extracorporeal membrane oxygenation have significantly enhanced decision making and underscored the importance of timely and decisive intervention in damage control thoracic surgery to optimize patient outcomes. This review aims to provide a comprehensive overview of damage control thoracic surgery, detailing the principles, indications, operative techniques, perioperative management, and the integration of advanced therapies to improve outcomes in patients with severe thoracic injuries.

2.
Cancer Res Commun ; 4(10): 2565-2574, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39240065

ABSTRACT

Oxygen-enhanced MRI (OE-MRI) has shown promise for quantifying and spatially mapping tumor hypoxia, either alone or in combination with perfusion imaging. Previous studies have validated the technique in mouse models and in patients with cancer. Here, we report the first evidence that OE-MRI can track change in tumor oxygenation induced by two drugs designed to modify hypoxia. Mechanism of action of banoxantrone and atovaquone were confirmed using in vitro experiments. Next, in vivo OE-MRI studies were performed in Calu6 and U87 xenograft tumor models, alongside fluorine-18-fluoroazomycin arabinoside PET and immunohistochemistry assays of hypoxia. Neither drug altered tumor size. Banoxantrone reduced OE-MRI hypoxic fraction in Calu6 tumors by 52.5% ± 12.0% (P = 0.008) and in U87 tumors by 29.0% ± 15.8% (P = 0.004) after 3 days treatment. Atovaquone reduced OE-MRI hypoxic fraction in Calu6 tumors by 53.4% ± 15.3% (P = 0.002) after 7 days therapy. PET and immunohistochemistry provided independent validation of the MRI findings. Finally, combined OE-MRI and perfusion imaging showed that hypoxic tissue was converted into necrotic tissue when treated by the hypoxia-activated cytotoxic prodrug banoxantrone, whereas hypoxic tissue became normoxic when treated by atovaquone, an inhibitor of mitochondrial complex III of the electron transport chain. OE-MRI detected and quantified hypoxia reduction induced by two hypoxia-modifying therapies and could distinguish between their differential mechanisms of action. These data support clinical translation of OE-MRI biomarkers in clinical trials of hypoxia-modifying agents to identify patients demonstrating biological response and to optimize treatment timing and scheduling. Significance: For the first time, we show that hypoxic fraction measured by oxygen-enhanced MRI (OE-MRI) detected changes in tumor oxygenation induced by two drugs designed specifically to modify hypoxia. Furthermore, when combined with perfusion imaging, OE-MRI hypoxic volume distinguished the two drug mechanisms of action. This imaging technology has potential to facilitate drug development, enrich clinical trial design, and accelerate clinical translation of novel therapeutics into clinical use.


Subject(s)
Atovaquone , Magnetic Resonance Imaging , Oxygen , Atovaquone/pharmacology , Atovaquone/therapeutic use , Animals , Humans , Magnetic Resonance Imaging/methods , Mice , Oxygen/metabolism , Cell Line, Tumor , Xenograft Model Antitumor Assays , Tumor Hypoxia/drug effects , Positron-Emission Tomography/methods , Female , Mice, Nude
3.
ASN Neuro ; 16(1): 2394352, 2024.
Article in English | MEDLINE | ID: mdl-39249102

ABSTRACT

Iron is a critical transition metal required to sustain a healthy central nervous system. Iron is involved in metabolic reactions, enzymatic activity, myelinogenesis, and oxygen transport. However, in several pathological conditions such as cancer, neurodegeneration, and neurotrauma iron becomes elevated. Excessive iron can have deleterious effects leading to reactive oxygen species (ROS) via the Fenton reaction. Iron-derived ROS are known to drive several mechanisms such as cell death pathways including ferroptosis, necroptosis, and pyroptosis. Excessive iron present in the post-traumatic brain could trigger these harmful pathways potentiating the high rates of morbidity and mortality. In the present review, we will discuss how iron plays an intricate role in initiating ferroptosis, necroptosis, and pyroptosis, examine their potential link to traumatic brain injury morbidity and mortality, and suggest therapeutic targets.


Subject(s)
Brain Injuries, Traumatic , Ferroptosis , Iron , Necroptosis , Pyroptosis , Pyroptosis/physiology , Humans , Ferroptosis/physiology , Iron/metabolism , Necroptosis/physiology , Animals , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Reactive Oxygen Species/metabolism
4.
Eur Radiol ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39122855

ABSTRACT

OBJECTIVES: To measure dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) biomarker repeatability in patients with non-small cell lung cancer (NSCLC). To use these statistics to identify which individual target lesions show early biological response. MATERIALS AND METHODS: A single-centre, prospective DCE-MRI study was performed between September 2015 and April 2017. Patients with NSCLC were scanned before standard-of-care radiotherapy to evaluate biomarker repeatability and two weeks into therapy to evaluate biological response. Volume transfer constant (Ktrans), extravascular extracellular space volume fraction (ve) and plasma volume fraction (vp) were measured at each timepoint along with tumour volume. Repeatability was assessed using a within-subject coefficient of variation (wCV) and repeatability coefficient (RC). Cohort treatment effects on biomarkers were estimated using mixed-effects models. RC limits of agreement revealed which individual target lesions changed beyond that expected with biomarker daily variation. RESULTS: Fourteen patients (mean age, 67 years +/- 12, 8 men) had 22 evaluable lesions (12 primary tumours, 8 nodal metastases, 2 distant metastases). The wCV (in 8/14 patients) was between 9.16% to 17.02% for all biomarkers except for vp, which was 42.44%. Cohort-level changes were significant for Ktrans and ve (p < 0.001) and tumour volume (p = 0.002). Ktrans and tumour volume consistently showed the greatest number of individual lesions showing biological response. In distinction, no individual lesions had a real change in ve despite the cohort-level change. CONCLUSION: Identifying individual early biological responders provided additional information to that derived from conventional cohort cohort-level statistics, helping to prioritise which parameters would be best taken forward into future studies. CLINICAL RELEVANCE STATEMENT: Dynamic contrast-enhanced magnetic resonance imaging biomarkers Ktrans and tumour volume are repeatable and detect early treatment-induced changes at both cohort and individual lesion levels, supporting their use in further evaluation of radiotherapy and targeted therapeutics. KEY POINTS: Few literature studies report quantitative imaging biomarker precision, by measuring repeatability or reproducibility. Several DCE-MRI biomarkers of lung cancer tumour microenvironment were highly repeatable. Repeatability coefficient measurements enabled lesion-specific evaluation of early biological response to therapy, improving conventional assessment.

5.
Clin Cancer Res ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39142654

ABSTRACT

PURPOSE: Hypoxia mediates treatment resistance in solid tumors. We evaluated if oxygen-enhanced (OE)-MRI-derived hypoxic volume (HVMRI) is repeatable and can detect radiotherapy-induced hypoxia modification in HPV-associated oropharyngeal head and neck squamous cell cancer (HNSCC). EXPERIMENTAL DESIGN: 27 patients were recruited prospectively between March 2021 and January 2024. HVMRI was measured in primary and nodal tumors prior to standard-of-care (chemo)radiotherapy then at weeks 2 and 4 (W2, W4) into therapy. Two pre-treatment scans assessed biomarker within-subject coefficient of variation (wCV) and repeatability coefficient (RC). Cohort treatment response was measured using mixed-effects modelling. Responding lesions were identified by comparing HVMRI change to RC limits of agreement (LOA). RESULTS: OE-MRI identified hypoxia in all lesions. HVMRI wCV was 24.6% and RC LOA were -45.7% to 84.1%. Cohort median pre-treatment HVMRI of 11.3 cm3 reduced to 6.9 cm3 at W2 and 5.9 cm3 at W4 (both p < 0.001). HVMRI was reduced in 54.5% of individual lesions by W2 and in 88.2% by W4. All lesions with W2 hypoxia reduction showed persistent modification at W4. HVMRI reduced in some lesions that showed no overall volume change. Hypoxia modification was discordant between primary and nodal tumors in 50.0% of patients. CONCLUSIONS: Radiation-induced hypoxia modification can occur as early as W2, but onset varies between patients and was not necessarily associated with overall size change. Half of all patients had discordant changes in primary and nodal tumors. These findings have implications for patient selection and timing of dose de-escalation strategies in HPV-associated oropharyngeal carcinoma.

6.
Cureus ; 16(7): e64103, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39114228

ABSTRACT

This case report discusses the uncommon occurrence of bilateral inguinal hernias masking cryptorchidism in a 47-year-old male, emphasizing the complexities and nuances of diagnosing and managing undescended testes in adults. Cryptorchidism is most often identified and treated during infancy; however, its rare adult manifestation presents significant diagnostic challenges and is fraught with serious implications for fertility and malignancy if left untreated. The subject presented with long-standing bilateral groin discomfort and was initially evaluated using clinical examination and CT imaging, which diagnosed bilateral inguinal hernias but did not initially detect cryptorchidism. During the staged surgical repairs, the testes were unexpectedly discovered within the hernia sacs, significantly altering the surgical approach and postoperative management. This necessitated an intraoperative consultation and collaboration between general surgery and urology, highlighting the critical role of multidisciplinary teamwork in managing complex surgical cases. The report underscores the importance of meticulous preoperative assessment and raises awareness about the potential for unusual findings in adult inguinal hernia repairs. This case report stresses the need for careful postoperative follow-up and regular urological surveillance to monitor for potential complications, including the development of testicular cancer. This case contributes valuable insights into the management strategies and long-term considerations for adult cryptorchidism, reinforcing the need for heightened clinical suspicion in similar presentations to ensure optimal patient outcomes.

7.
Nutrients ; 16(15)2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39125438

ABSTRACT

Current evidence suggests that iron deficiency (ID) plays a key role in the pathogenesis of conditions presenting with restlessness such as attention deficit hyperactivity disorder (ADHD) and restless legs syndrome (RLS). In clinical practice, ID and iron supplementation are not routinely considered in the diagnostic work-up and/or as a treatment option in such conditions. Therefore, we conducted a scoping literature review of ID guidelines. Of the 58 guidelines included, only 9 included RLS, and 3 included ADHD. Ferritin was the most frequently cited biomarker, though cutoff values varied between guidelines and depending on additional factors such as age, sex, and comorbidities. Recommendations surrounding measurable iron biomarkers and cutoff values varied between guidelines; moreover, despite capturing the role of inflammation as a concept, most guidelines often did not include recommendations for how to assess this. This lack of harmonization on the interpretation of iron and inflammation biomarkers raises questions about the applicability of current guidelines in clinical practice. Further, the majority of ID guidelines in this review did not include the ID-associated disorders, ADHD and RLS. As ID can be associated with altered movement patterns, a novel consensus is needed for investigating and interpreting iron status in the context of different clinical phenotypes.


Subject(s)
Biomarkers , Iron Deficiencies , Practice Guidelines as Topic , Restless Legs Syndrome , Humans , Restless Legs Syndrome/diagnosis , Biomarkers/blood , Ferritins/blood , Sleep/physiology , Attention Deficit Disorder with Hyperactivity , Anemia, Iron-Deficiency/diagnosis , Iron/blood
8.
J Chem Phys ; 161(7)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39145558

ABSTRACT

A complex interplay of structural, electronic, and vibrational degrees of freedom underpins the fate of molecular excited states. Organic assemblies exhibit a myriad of excited-state decay processes, such as symmetry-breaking charge separation (SB-CS), excimer (EX) formation, singlet fission, and energy transfer. Recent studies of cofacial and slip-stacked perylene-3,4:9,10-bis(dicarboximide) (PDI) multimers demonstrate that slight variations in core substituents and H- or J-type aggregation can determine whether the system follows an SB-CS pathway or an EX one. However, questions regarding the relative importance of structural properties and molecular vibrations in driving the excited-state dynamics remain. Here, we use a combination of two-dimensional electronic spectroscopy, femtosecond stimulated Raman spectroscopy, and quantum chemistry computations to compare the photophysics of two PDI dimers. The dimer with 1,7-bis(pyrrolidin-1'-yl) substituents (5PDI2) undergoes ultrafast SB-CS from a photoexcited mixed state, while the dimer with bis-1,7-(3',5'-di-t-butylphenoxy) substituents (PPDI2) rapidly forms an EX state. Examination of their quantum beating features reveals that SB-CS in 5PDI2 is driven by the collective vibronic coupling of two or more excited-state vibrations. In contrast, we observe signatures of low-frequency vibrational coherence transfer during EX formation by PPDI2, which aligns with several previous studies. We conclude that key electronic and structural differences between 5PDI2 and PPDI2 determine their markedly different photophysics.

9.
J Neurochem ; 168(9): 3132-3153, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39072788

ABSTRACT

The role of iron dyshomeostasis in neurodegenerative disease has implicated the involvement of genes that regulate brain iron. The homeostatic iron regulatory gene (HFE) has been at the forefront of these studies given the role of the H63D variant (H67D in mice) in increasing brain iron load. Despite iron's role in oxidative stress production, H67D mice have shown robust protection against neurotoxins and improved recovery from intracerebral hemorrhage. Previous data support the notion that H67D mice adapt to the increased brain iron concentrations and hence develop a neuroprotective environment. This adaptation is particularly evident in the lumbar spinal cord (LSC) and ventral midbrain (VM), both relevant to neurodegeneration. We studied C57BL6/129 mice with homozygous H67D compared to WT HFE. Immunohistochemistry was used to analyze dopaminergic (in the VM) and motor (in the LSC) neuron population maturation in the first 3 months. Immunoblotting was used to measure protein carbonyl content and the expression of oxidative phosphorylation complexes. Seahorse assay was used to analyze metabolism of mitochondria isolated from the LSC and VM. Finally, a Nanostring transcriptomic analysis of genes relevant to neurodegeneration within these regions was performed. Compared to WT mice, we found no difference in the viability of motor neurons in the LSC, but the dopaminergic neurons in H67D mice experienced significant decline before 3 months of age. Both regions in H67D mice had alterations in oxidative phosphorylation complex expression indicative of stress adaptation. Mitochondria from both regions of H67D mice demonstrated metabolic differences compared to WT. Transcriptional differences in these regions of H67D mice were related to cell structure and adhesion as well as cell signaling. Overall, we found that the LSC and VM undergo significant and distinct metabolic and transcriptional changes in adaptation to iron-related stress induced by the H67D HFE gene variant.


Subject(s)
Hemochromatosis Protein , Neurodegenerative Diseases , Animals , Male , Mice , Brain/metabolism , Hemochromatosis Protein/genetics , Hemochromatosis Protein/metabolism , Iron/metabolism , Mice, Inbred C57BL , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Oxidative Stress/physiology , Oxidative Stress/genetics , Spinal Cord/metabolism
10.
Antibiotics (Basel) ; 13(7)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39061343

ABSTRACT

Molecular diagnostics has the potential to revolutionise the field of clinical microbiology. Microbial identification and nomenclature have, for too long, been restricted to phenotypic characterisation. However, this species-level view fails to wholly account for genetic heterogeneity, a result of lateral gene transfer, mediated primarily by mobile genetic elements. This genetic promiscuity has helped to drive virulence development, stress adaptation, and antimicrobial resistance in several important bacterial pathogens, complicating their detection and frustrating our ability to control them. We argue that, as clinical microbiologists at the front line, we must embrace the molecular technologies that allow us to focus specifically on the genetic elements that cause disease rather than the bacterial species that express them. This review focuses on the evolution of microbial taxonomy since the introduction of molecular sequencing, the role of mobile genetic elements in antimicrobial resistance, the current and emerging assays in clinical laboratories, and the comparison of phenotypic versus genotypic analyses. In essence, it is time now to refocus from species to genes as part of a new diagnostic paradigm.

11.
World Neurosurg ; 189: 339-350.e1, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38857866

ABSTRACT

Astrocytoma is the most common adult brain tumor, with glioblastoma being the deadliest neuro-related malignancy. Despite advances in oncology, the prognosis for astrocytoma, especially glioblastoma, remains poor, and tracking disease progression is challenging due to a lack of robust biomarkers. Genetic biomarkers, including microRNAs, cell-free DNA, circulating tumor DNA, circular RNA, and long noncoding RNA, can serve as potential diagnostic and therapeutic targets. In this review, we examine the existing literature, analyzing the various less established liquid and tumor genetic biomarkers and their potential to act as diagnostic, prognostic, and therapeutic targets. We highlight the clinical challenges and limitations in implementing liquid biopsy strategies in clinical practice. The article discusses the potential of liquid biopsies as valuable tools for personalized astrocytoma management while emphasizing the need for standardized protocols and further advancements to establish their clinical utility and therapeutic application.


Subject(s)
Astrocytoma , Biomarkers, Tumor , Brain Neoplasms , Humans , Astrocytoma/genetics , Astrocytoma/diagnosis , Astrocytoma/therapy , Brain Neoplasms/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/therapy , Biomarkers, Tumor/genetics , Prognosis , Liquid Biopsy/methods , MicroRNAs/genetics , Genetic Markers/genetics
12.
J Alzheimers Dis ; 99(4): 1425-1440, 2024.
Article in English | MEDLINE | ID: mdl-38788065

ABSTRACT

Background: Polygenic risk scores (PRS) are linear combinations of genetic markers weighted by effect size that are commonly used to predict disease risk. For complex heritable diseases such as late-onset Alzheimer's disease (LOAD), PRS models fail to capture much of the heritability. Additionally, PRS models are highly dependent on the population structure of the data on which effect sizes are assessed and have poor generalizability to new data. Objective: The goal of this study is to construct a paragenic risk score that, in addition to single genetic marker data used in PRS, incorporates epistatic interaction features and machine learning methods to predict risk for LOAD. Methods: We construct a new state-of-the-art genetic model for risk of Alzheimer's disease. Our approach innovates over PRS models in two ways: First, by directly incorporating epistatic interactions between SNP loci using an evolutionary algorithm guided by shared pathway information; and second, by estimating risk via an ensemble of non-linear machine learning models rather than a single linear model. We compare the paragenic model to several PRS models from the literature trained on the same dataset. Results: The paragenic model is significantly more accurate than the PRS models under 10-fold cross-validation, obtaining an AUC of 83% and near-clinically significant matched sensitivity/specificity of 75%. It remains significantly more accurate when evaluated on an independent holdout dataset and maintains accuracy within APOE genotype strata. Conclusions: Paragenic models show potential for improving disease risk prediction for complex heritable diseases such as LOAD over PRS models.


Subject(s)
Alzheimer Disease , Epistasis, Genetic , Genetic Predisposition to Disease , Machine Learning , Multifactorial Inheritance , Humans , Alzheimer Disease/genetics , Multifactorial Inheritance/genetics , Epistasis, Genetic/genetics , Genetic Predisposition to Disease/genetics , Female , Male , Polymorphism, Single Nucleotide/genetics , Aged , Genome-Wide Association Study/methods , Apolipoproteins E/genetics , Models, Genetic , Genetic Risk Score
14.
Cancers (Basel) ; 16(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38610979

ABSTRACT

Published models inconsistently associate glioblastoma size with overall survival (OS). This study aimed to investigate the prognostic effect of tumour size in a large cohort of patients diagnosed with GBM and interrogate how sample size and non-linear transformations may impact on the likelihood of finding a prognostic effect. In total, 279 patients with a IDH-wildtype unifocal WHO grade 4 GBM between 2014 and 2020 from a retrospective cohort were included. Uni-/multivariable association between core volume, whole volume (CV and WV), and diameter with OS was assessed with (1) Cox proportional hazard models +/- log transformation and (2) resampling with 1,000,000 repetitions and varying sample size to identify the percentage of models, which showed a significant effect of tumour size. Models adjusted for operation type and a diameter model adjusted for all clinical variables remained significant (p = 0.03). Multivariable resampling increased the significant effects (p < 0.05) of all size variables as sample size increased. Log transformation also had a large effect on the chances of a prognostic effect of WV. For models adjusted for operation type, 19.5% of WV vs. 26.3% log-WV (n = 50) and 69.9% WV and 89.9% log-WV (n = 279) were significant. In this large well-curated cohort, multivariable modelling and resampling suggest tumour volume is prognostic at larger sample sizes and with log transformation for WV.

16.
Mol Biol Cell ; 35(5): ar66, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38536445

ABSTRACT

The maintenance of epithelial barrier function involves cellular tension, with cells pulling on their neighbors to maintain epithelial integrity. Wounding interrupts cellular tension, which may serve as an early signal to initiate epithelial repair. To characterize how wounds alter cellular tension we used a laser-recoil assay to map cortical tension around wounds in the epithelial monolayer of the Drosophila pupal notum. Within a minute of wounding, there was widespread loss of cortical tension along both radial and tangential directions. This tension loss was similar to levels observed with Rok inactivation. Tension was subsequently restored around the wound, first in distal cells and then in proximal cells, reaching the wound margin ∼10 min after wounding. Restoring tension required the GPCR Mthl10 and the IP3 receptor, indicating the importance of this calcium signaling pathway known to be activated by cellular damage. Tension restoration correlated with an inward-moving contractile wave that has been previously reported; however, the contractile wave itself was not affected by Mthl10 knockdown. These results indicate that cells may transiently increase tension and contract in the absence of Mthl10 signaling, but that pathway is critical for fully resetting baseline epithelial tension after it is disrupted by wounding.


Subject(s)
Epithelial Cells , Wound Healing , Animals , Wound Healing/physiology , Epithelial Cells/physiology , Receptors, G-Protein-Coupled , Signal Transduction , Drosophila
17.
Sci Rep ; 14(1): 6188, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38485759

ABSTRACT

This study correlated mild traumatic brain injury (mTBI) cognitive changes with ASL-MRI glymphatic clearance rates (GCRs) and recovery with GCR improvement. mTBI disrupts the blood brain barrier (BBB), reducing capillary mean transit time and GCRs. mTBI is clinically diagnosed utilizing history/examination findings with no physiologic biomarkers. 3D TGSE (turbo-gradient spin-echo) pulsed arterial spin-labeling 3T MRI with 7 long inversion times (TIs) assessed the signal clearance of labeled protons 2800-4000 ms postlabeling in bifrontal, bitemporal, and biparietal regions within 7 days of mTBI and once clinically cleared to resume activities. The Sport Concussion Assessment Tool Version 5 (SKAT5) and Brief Oculomotor/Vestibular Assessment evaluated injured athletes' cognitive function prior to MRIs. The pilot study demonstrated significant GCRs improvement (95% CI - 0.06 to - 0.03 acute phase; to CI-recovery CI 0.0772 to - 0.0497; P < 0.001 in frontal lobes; and parietal lobes (95% CI - 0.0584 to - 0.0251 acute; CI - 0.0727 to - 0.0392 recovery; P = 0.024) in 9 mTBI athletes (8 female, 1 male). Six age/activity-matched controls (4 females, 2 males) were also compared. mTBI disrupts the BBB, reducing GCR measured using the 3D ASL MRI technique. ASL MRI is a potential noninvasive biomarker of mTBI and subsequent recovery.


Subject(s)
Brain Concussion , Craniocerebral Trauma , Humans , Male , Female , Protons , Pilot Projects , Spin Labels , Magnetic Resonance Imaging/methods , Cerebrovascular Circulation/physiology
18.
Int J Mol Sci ; 25(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542306

ABSTRACT

Common variants in the iron regulatory protein HFE contribute to systematically increased iron levels, yet the effects in the brain are not fully characterized. It is commonly believed that iron dysregulation is a key contributor to neurodegenerative disease due to iron's ability to catalyze reactive oxygen species production. However, whether HFE variants exacerbate or protect against neurodegeneration has been heavily debated. Some claim that mutated HFE exacerbates oxidative stress and neuroinflammation, thus predisposing carriers to neurodegeneration-linked pathologies. However, H63D HFE has also been shown to slow the progression of multiple neurodegenerative diseases and to protect against environmental toxins that cause neurodegeneration. These conflicting results showcase the need to further understand the contribution of HFE variants to neurodegenerative disease heterogeneity. Data from mouse models consistently demonstrate robust neuroprotection against toxins known to increase the risk of neurodegenerative disease. This may represent an adaptive, or hormetic, response to increased iron, which leaves cells better protected against future stressors. This review describes the current research regarding the contribution of HFE variants to neurodegenerative disease prognosis in the context of a hormetic model. To our knowledge, this is the first time that a hormetic model for neurodegenerative disease has been presented.


Subject(s)
Neurodegenerative Diseases , Mice , Animals , Neurodegenerative Diseases/genetics , Hemochromatosis Protein/genetics , Histocompatibility Antigens Class I/genetics , Hormesis , Mutation , Iron/metabolism
19.
J Environ Manage ; 355: 120565, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38461637

ABSTRACT

Raw liquid anaerobic digestate was synthesised into nutrient-dense solid digestates via acidification and evaporation. Acidification retained ammonium in the digestate whilst also donating the anion to free ammonium to form an ammonium salt. Digestate was treated with the addition of sulphuric, nitric, and phosphoric acid resulting in the formation of ammonium sulphate, ammonium nitrate and ammonium phosphate, respectively then evaporated into a solid fertiliser product. FTIR, XRD and SEM-EDS collectively confirm that the addition of acids completely converted the free ammonium in the raw digestate into their respective ammonium salt counterparts. Compounds of potassium chloride, silicon dioxide, calcium carbonate, magnesium ammonium phosphate, sodium nitrate, and sodium chloride were identified in all solid digestate samples. Plant growth and grain yield was higher in urea ammonium nitrate, raw liquid digestate and acidified digestate products compared to control and unacidified solid digestate. Urea ammonium nitrate and ammonium nitrate solid digestate had the highest dry shoot, likely due to the high available nitrogen found in both fertilisers. Overall, acidification and evaporation of liquid digestate can efficiently transform it into a valuable solid fertiliser with a high nutrient density. This process not only has the potential to mitigate handling and storage constraints of low nutrient density digestate in anaerobic digestion facilities but also offers a sustainable alternative to conventional fertilisers.


Subject(s)
Ammonium Compounds , Nitrates , Refuse Disposal , Urea/analogs & derivatives , Waste Products , Food , Fertilizers , Food Loss and Waste , Anaerobiosis , Refuse Disposal/methods , Nitrogen/analysis
20.
Br J Haematol ; 204(3): 759-773, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253961

ABSTRACT

Iron deficiency (ID) and iron-deficiency anaemia (IDA) are global public health concerns, most commonly afflicting children, pregnant women and women of childbearing age. Pathological outcomes of ID include delayed cognitive development in children, adverse pregnancy outcomes and decreased work capacity in adults. IDA is usually treated by oral iron supplementation, typically using iron salts (e.g. FeSO4 ); however, dosing at several-fold above the RDA may be required due to less efficient absorption. Excess enteral iron causes adverse gastrointestinal side effects, thus reducing compliance, and negatively impacts the gut microbiome. Recent research has sought to identify new iron formulations with better absorption so that lower effective dosing can be utilized. This article outlines emerging research on oral iron supplementation and focuses on molecular mechanisms by which different supplemental forms of iron are transported across the intestinal epithelium and whether these transport pathways are subject to regulation by the iron-regulatory hormone hepcidin.


Subject(s)
Anemia, Iron-Deficiency , Iron Deficiencies , Iron Overload , Adult , Child , Female , Humans , Pregnancy , Iron/metabolism , Anemia, Iron-Deficiency/therapy , Iron Overload/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL