Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 62(2): 737-48, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21288473

ABSTRACT

A deficit in prepulse inhibition (PPI) can be one of the clinically observed features of post-traumatic stress disorder (PTSD) that is seen long after the acute traumatic episode has terminated. Thus, reduced PPI may represent an enduring psychophysiological marker of this illness in some patients. PPI is an operational measure of sensorimotor gating and refers to the phenomenon in which a weak stimulus presented immediately before an intense startling stimulus inhibits the magnitude of the subsequent startle response. The effects of stress on PPI have been relatively understudied, and in particular, there is very little information on PPI effects of ethologically relevant psychological stressors. We aimed to develop a paradigm for evaluating stress-induced sensorimotor gating abnormalities by comparing the effects of a purely psychological stressor (predator exposure) to those of a nociceptive physical stressor (footshock) on PPI and baseline startle responses in rats over an extended period of time following stressor presentation. Male Sprague-Dawley rats were exposed (within a protective cage) to ferrets for 5 min or left in their homecage and then tested for PPI immediately, 24 h, 48 h, and 9 days after the exposure. The effects of footshock were evaluated in a separate set of rats. The effects seen with stressor presentation were compared to those elicited by corticotropin-releasing factor (CRF; 0.5 and 3 µg/6 µl, intracerebroventricularly). Finally, the effects of these stressors and CRF administration on plasma corticosterone were measured. PPI was disrupted 24 h after ferret exposure; in contrast, footshock failed to affect PPI at any time. CRF mimicked the predator stress profile, with the lowdose producing a PPI deficit 24 h after infusion. Interestingly, the high dose also produced a PPI deficit 24 h after infusion, but with this dose, the PPI deficit was evident even 9d later. Plasma corticosterone levels were elevated acutely (before PPI deficits emerged) by both stressors and CRF, but returned to normal control levels 24 h later, when PPI deficits were present. Thus, predator exposure produces a delayed disruption of PPI, and stimulation of CRF receptors recapitulates these effects. Contemporaneous HPA axis activation is neither necessary nor sufficient for these PPI deficits. These results indicate that predator exposure, perhaps acting through CRF, may model the delayed-onset and persistent sensorimotor gating abnormalities that have been observed clinically in PTSD, and that further studies using this model may shed insight on the mechanisms of information-processing deficits in this disorder. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.


Subject(s)
Corticotropin-Releasing Hormone/pharmacology , Predatory Behavior/physiology , Reflex, Startle/physiology , Sensory Gating/physiology , Stress Disorders, Post-Traumatic/physiopathology , Acoustic Stimulation , Animals , Corticosterone/blood , Ferrets , Male , Predatory Behavior/drug effects , Rats , Rats, Sprague-Dawley , Reflex, Startle/drug effects , Sensory Gating/drug effects , Stress Disorders, Post-Traumatic/chemically induced
5.
Neuropsychopharmacology ; 31(10): 2150-61, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16407904

ABSTRACT

Prepulse inhibition (PPI) refers to the attenuation of startle when a weak prestimulus precedes the startling stimulus. PPI is deficient in several psychiatric illnesses involving poor sensorimotor gating. Previous studies indicate that alpha1 adrenergic receptors regulate PPI, yet the extent to which these effects are mediated by central vs peripheral receptors is unclear. The present studies compared the effects of intracerebroventricular (ICV) vs intraperitoneal (IP) delivery of several alpha1 receptor agonists on PPI. Male Sprague-Dawley rats received either cirazoline (0, 10, 25, 50 microg/5 microl), methoxamine (0, 30, 100 microg/5 microl), or phenylephrine (0, 3, 10, 30 microg/5 microl) ICV immediately before testing. Separate groups received either cirazoline (0, 0.25, 0.50, 0.75 mg/kg), methoxamine (0, 2, 5, 10 mg/kg), or phenylephrine (0, 0.1, 2.0 mg/kg) IP 5 min before testing. PPI, baseline startle responses, and piloerection, an index of autonomic arousal, were measured. Cirazoline disrupted PPI; effective ICV doses were approximately six times lower than effective IP doses. Methoxamine disrupted PPI after ICV infusion but failed to affect PPI with IP doses that were up to 30-fold higher than the effective ICV dose. Phenylephrine disrupted PPI with ICV administration, but did not alter PPI after IP injection of even a 20-fold higher dose. None of the ICV treatments altered baseline startle magnitude, but phenylephrine and methoxamine lowered startle after administration of high systemic doses. Piloerection was induced by cirazoline via either route of administration, and by IP methoxamine and phenylephrine, but not by ICV infusion of methoxamine or phenylephrine. These findings indicate that alpha1 receptor-mediated PPI disruption occurs exclusively through stimulation of central receptors and is dissociable from alterations in baseline startle or autonomic effects.


Subject(s)
Infusions, Parenteral , Injections, Intraventricular , Neural Inhibition/physiology , Receptors, Adrenergic, alpha-1/physiology , Reflex, Startle/physiology , Acoustic Stimulation/methods , Adrenergic alpha-Agonists/administration & dosage , Adrenergic alpha-Antagonists/administration & dosage , Analysis of Variance , Animals , Behavior, Animal , Conditioning, Classical/drug effects , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Imidazoles/pharmacology , Male , Methoxamine/pharmacology , Neural Inhibition/drug effects , Phenylephrine/pharmacology , Piloerection/drug effects , Prazosin/pharmacology , Rats , Rats, Sprague-Dawley , Reflex, Startle/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...