Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 629(8010): 80-85, 2024 May.
Article in English | MEDLINE | ID: mdl-38693414

ABSTRACT

Building a fault-tolerant quantum computer will require vast numbers of physical qubits. For qubit technologies based on solid-state electronic devices1-3, integrating millions of qubits in a single processor will require device fabrication to reach a scale comparable to that of the modern complementary metal-oxide-semiconductor (CMOS) industry. Equally important, the scale of cryogenic device testing must keep pace to enable efficient device screening and to improve statistical metrics such as qubit yield and voltage variation. Spin qubits1,4,5 based on electrons in Si have shown impressive control fidelities6-9 but have historically been challenged by yield and process variation10-12. Here we present a testing process using a cryogenic 300-mm wafer prober13 to collect high-volume data on the performance of hundreds of industry-manufactured spin qubit devices at 1.6 K. This testing method provides fast feedback to enable optimization of the CMOS-compatible fabrication process, leading to high yield and low process variation. Using this system, we automate measurements of the operating point of spin qubits and investigate the transitions of single electrons across full wafers. We analyse the random variation in single-electron operating voltages and find that the optimized fabrication process leads to low levels of disorder at the 300-mm scale. Together, these results demonstrate the advances that can be achieved through the application of CMOS-industry techniques to the fabrication and measurement of spin qubit devices.

2.
Nat Commun ; 13(1): 940, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35177606

ABSTRACT

Electron spins in silicon quantum dots are promising qubits due to their long coherence times, scalable fabrication, and potential for all-electrical control. However, charge noise in the host semiconductor presents a major obstacle to achieving high-fidelity single- and two-qubit gates in these devices. In this work, we measure the charge-noise spectrum of a Si/SiGe singlet-triplet qubit over nearly 12 decades in frequency using a combination of methods, including dynamically-decoupled exchange oscillations with up to 512 π pulses during the qubit evolution. The charge noise is colored across the entire frequency range of our measurements, although the spectral exponent changes with frequency. Moreover, the charge-noise spectrum inferred from conductance measurements of a proximal sensor quantum dot agrees with that inferred from coherent oscillations of the singlet-triplet qubit, suggesting that simple transport measurements can accurately characterize the charge noise over a wide frequency range in Si/SiGe quantum dots.

SELECTION OF CITATIONS
SEARCH DETAIL
...