Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 17(4): 2681-2689, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28345926

ABSTRACT

The epitaxial graphene buffer layer on the Si face of hexagonal SiC shows a promising band gap, of which the precise origin remains to be understood. In this work, we correlate the electronic to the atomic structure of the buffer layer by combining angle resolved photoemission spectroscopy (ARPES), scanning tunneling microscopy (STM), and high-resolution scanning transmission electron microscopy (HR-STEM). We show that the band structure in the buffer has an electronic periodicity related to the structural periodicity observed in STM images and published X-ray diffraction. Our HR-STEM measurements show the bonding of the buffer layer to the SiC at specific locations separated by 1.5 nm. This is consistent with the quasi 6 × 6 periodic corrugation observed in the STM images. The distance between buffer C and SiC is 1.9 Å in the bonded regions and up to 2.8 Å in the decoupled regions, corresponding to a 0.9 Å corrugation of the buffer layer. The decoupled regions are sp2 hybridized. Density functional tight binding (DFTB) calculations demonstrate the presence of a gap at the Dirac point everywhere in the buffer layer, even in the decoupled regions where the buffer layer has an atomic structure close to that of graphene. The surface periodicity also promotes band in the superperiodic Brillouin zone edges as seen by photoemission and confirmed by our calculations.

2.
Nano Lett ; 17(1): 341-347, 2017 01 11.
Article in English | MEDLINE | ID: mdl-27981850

ABSTRACT

Producing a usable semiconducting form of graphene has plagued the development of graphene electronics for nearly two decades. Now that new preparation methods have become available, graphene's intrinsic properties can be measured and the search for semiconducting graphene has begun to produce results. This is the case of the first graphene "buffer" layer grown on SiC(0001) presented in this work. We show, contrary to assumptions of the last 40 years, that the buffer graphene layer is not commensurate with SiC. The new modulated structure we've found resolves a long-standing contradiction where ab initio calculations expect a metallic buffer, while experimentally it is found to be a semiconductor. Model calculations using the new incommensurate structure show that the semiconducting π-band character of the buffer comes from partially hybridized graphene incommensurate boundaries surrounding unperturbed graphene islands.

3.
Nano Lett ; 15(1): 182-9, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25457853

ABSTRACT

Graphene nanoribbons grown on sidewall facets of SiC have demonstrated exceptional quantized ballistic transport up to 15 µm at room temperature. Angular-resolved photoemission spectroscopy (ARPES) has shown that the ribbons have the band structure of charge neutral graphene, while bent regions of the ribbon develop a bandgap. We present scanning tunneling microscopy and transmission electron microscopy of armchair nanoribbons grown on recrystallized sidewall trenches etched in SiC. We show that the nanoribbons consist of a single graphene layer essentially decoupled from the facet surface. The nanoribbons are bordered by 1-2 nm wide bent miniribbons at both the top and bottom edges of the nanoribbons. We establish that nanoscale confinement in the graphene miniribbons is the origin of the local large band gap observed in ARPES. The structural results presented here show how this gap is formed and provide a framework to help understand ballistic transport in sidewall graphene.


Subject(s)
Graphite/chemistry , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Microscopy, Electron, Transmission , Microscopy, Scanning Tunneling
4.
Nature ; 506(7488): 349-54, 2014 Feb 20.
Article in English | MEDLINE | ID: mdl-24499819

ABSTRACT

Graphene nanoribbons will be essential components in future graphene nanoelectronics. However, in typical nanoribbons produced from lithographically patterned exfoliated graphene, the charge carriers travel only about ten nanometres between scattering events, resulting in minimum sheet resistances of about one kilohm per square. Here we show that 40-nanometre-wide graphene nanoribbons epitaxially grown on silicon carbide are single-channel room-temperature ballistic conductors on a length scale greater than ten micrometres, which is similar to the performance of metallic carbon nanotubes. This is equivalent to sheet resistances below 1 ohm per square, surpassing theoretical predictions for perfect graphene by at least an order of magnitude. In neutral graphene ribbons, we show that transport is dominated by two modes. One is ballistic and temperature independent; the other is thermally activated. Transport is protected from back-scattering, possibly reflecting ground-state properties of neutral graphene. At room temperature, the resistance of both modes is found to increase abruptly at a particular length--the ballistic mode at 16 micrometres and the other at 160 nanometres. Our epitaxial graphene nanoribbons will be important not only in fundamental science, but also--because they can be readily produced in thousands--in advanced nanoelectronics, which can make use of their room-temperature ballistic transport properties.

5.
Nano Lett ; 10(10): 4061-6, 2010 Oct 13.
Article in English | MEDLINE | ID: mdl-20738114

ABSTRACT

In order to engineer a band gap into graphene, covalent bond-forming reactions can be used to change the hybridization of the graphitic atoms from sp(2) to sp(3), thereby modifying the conjugation length of the delocalized carbon lattice; similar side-wall chemistry has been shown to introduce a band gap into metallic single-walled carbon nanotubes. Here we demonstrate that the application of such covalent bond-forming chemistry modifies the periodicity of the graphene network thereby introducing a band gap (∼0.4 eV), which is observable in the angle-resolved photoelectron spectroscopy of aryl-functionalized graphene. We further show that the chemically-induced changes can be detected by Raman spectroscopy; the in-plane vibrations of the conjugated π-bonds exhibit characteristic Raman spectra and we find that the changes in D, G, and 2D-bands as a result of chemical functionalization of the graphene basal plane are quite distinct from that due to localized, physical defects in sp(2)-conjugated carbon.

6.
Science ; 312(5777): 1191-6, 2006 May 26.
Article in English | MEDLINE | ID: mdl-16614173

ABSTRACT

Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

SELECTION OF CITATIONS
SEARCH DETAIL
...