Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(44): 30428-30457, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37917371

ABSTRACT

The intermolecular interaction energies, including hydrogen bonds (H-bonds), of clusters of the ionic liquid ethylammonium nitrate (EAN) and 1-amino-1,2,3-triazole (1-AT) based deep eutectic propellants (DeEP) are examined. 1-AT is introduced as a neutral hydrogen bond donor (HBD) to EAN in order to form a eutectic mixture. The effective fragment potential (EFP) is used to examine the bonding interactions in the DeEP clusters. The resolution of the Identity (RI) approximated second order Møller-Plesset perturbation theory (RI-MP2) and coupled cluster theory (RI-CCSD(T)) are used to validate the EFP results. The EFP method predicts that there are significant polarization and charge transfer effects in the EAN:1-AT complexes, along with Coulombic, dispersion and exchange repulsion interactions. The EFP interaction energies are in good agreement with the RI-MP2 and RI-CCSD(T) results. The quasi-atomic orbital (QUAO) bonding and kinetic bond order (KBO) analyses are additionally used to develop a conceptual and semi-quantitative understanding of the H-bonding interactions as a function of the size of the system. The QUAO and KBO analyses suggest that the H-bonds in the examined clusters follow the characteristic hydrogen bonding three-center four electron interactions. The strongest H-bonding interactions between the (EAN)1:(1-AT)n and (EAN)2:(1-AT)n (n = 1-5) complexes are observed internally within EAN; that is, between the ethylammonium cation [EA]+ and the nitrate anion ([NO3]-). The weakest H-bonding interactions occur between [NO3]- and 1-AT. Consequently, the average strengths of the H-bonds within a given (EAN)x:(1-AT)n complex decrease as more 1-AT molecules are introduced into the EAN monomer and EAN dimer. The QUAO bonding analysis suggests that 1-AT in (EAN)x:(1-AT)n can act as both a HBD and a hydrogen bond acceptor simultaneously. It is observed that two 1-AT molecules can form H-bonds to each other. Although the KBOs that correspond to H-bonding interactions in [EA]+:1-AT, [NO3]-:1-AT and between two 1-AT molecules are weaker than the H-bonds in EAN, those weak H-bond networks with 1-AT could be important to form a stable DeEP.

2.
Phys Chem Chem Phys ; 21(31): 16878-16888, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31359024

ABSTRACT

The efficacy of using fragmentation methods, such as the effective fragment potential, the fragment molecular orbital and the effective fragment molecular orbital methods is discussed. The advantages and current limitations of these methods are considered, potential improvements are suggested, and a prognosis for the future is provided.

3.
J Phys Chem A ; 122(37): 7443-7454, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30129759

ABSTRACT

The gas phase proton transfer process in 1,2,4-triazolium dinitramide (TD) was studied using second-order perturbation theory to determine how the presence of one and two water molecules modifies the potential energy surface that connects the ion pair to the neutral pair. The presence of one water molecule can introduce small proton transfer energy barriers that separate the ion pair from the lower-energy neutral pair. These energy barriers are easily surmounted. Reaction paths were determined for single proton transfers and double proton transfers via one water molecule. In the presence of two water molecules, the global minimum is an ion pair, as are most of the lower-energy local minima. Energy barriers for single, double, and triple proton transfers were also found for TD in the presence of two water molecules. One TD ion pair structure with two water molecules has no corresponding neutral pair energy minimum. A quasi-atomic orbital analysis is used to understand the nature of the bonding in the various species studied in this work.

4.
J Phys Chem A ; 119(21): 5377-85, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25521599

ABSTRACT

The accuracy of the Hartree-Fock method with an empirical dispersion correction, HF-D3, to model interaction energies and locate constrained minimum geometries is tested against more conventional correlation methods, such as second-order perturbation theory and coupled cluster theory, and against the sophisticated effective fragment potential model. HF-D3 was applied to substituted-benzene dimers in both sandwich and T-shaped configurations and to DNA base pair complexes in both hydrogen bonded and stacked geometries. Overall, HF-D3 is found to be a plausible and cost efficient substitute for higher levels of electronic structure theory, such as MP2, in systems with π-π interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...