Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Neurotoxicology ; 100: 55-71, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38081392

ABSTRACT

Exposures to ambient ultrafine particle (UFP) air pollution (AP) during the early postnatal period in mice (equivalent to human third trimester brain development) produce male-biased changes in brain structure, including ventriculomegaly, reduced brain myelination, alterations in neurotransmitters and glial activation, as well as impulsive-like behavioral characteristics, all of which are also features characteristic of male-biased neurodevelopmental disorders (NDDs). The purpose of this study was to ascertain the extent to which inhaled Cu, a common contaminant of AP that is also dysregulated across multiple NDDs, might contribute to these phenotypes. For this purpose, C57BL/6J mice were exposed from postnatal days 4-7 and 10-13 for 4 hr/day to inhaled copper oxide (CuxOy) nanoparticles at an environmentally relevant concentration averaging 171.9 ng/m3. Changes in brain metal homeostasis and neurotransmitter levels were determined following termination of exposure (postnatal day 14), while behavioral changes were assessed in adulthood. CuxOy inhalation modified cortical metal homeostasis and produced male-biased disruption of striatal neurotransmitters, with marked increases in dopaminergic function, as well as excitatory/inhibitory imbalance and reductions in serotonergic function. Impulsive-like behaviors in a fixed ratio (FR) waiting-for-reward schedule and a fixed interval (FI) schedule of food reward occurred in both sexes, but more prominently in males, effects which could not be attributed to altered locomotor activity or short-term memory. Inhaled Cu as from AP exposures, at environmentally relevant levels experienced during development, may contribute to impaired brain function, as shown by its ability to disrupt brain metal homeostasis and striatal neurotransmission. In addition, its ability to evoke impulsive-like behavior, particularly in male offspring, may be related to striatal dopaminergic dysfunction that is known to mediate such behaviors. As such, regulation of air Cu levels may be protective of public health.


Subject(s)
Air Pollutants , Air Pollution , Female , Humans , Animals , Male , Mice , Air Pollutants/toxicity , Copper , Mice, Inbred C57BL , Particulate Matter , Neurotransmitter Agents
2.
Front Toxicol ; 4: 971970, 2022.
Article in English | MEDLINE | ID: mdl-36105436

ABSTRACT

Pregnancy is a unique critical window with nearly ubiquitous exposure to low concentrations of endocrine disrupting chemicals, such as per- and poly-fluoroalkyl substances (PFAS). Human and animal research suggests that PFAS compounds disrupt hypothalamic-pituitary-adrenal axis function, with some evidence of altered "anxiety-like" behavior, but little is known about the potential effects on maternal mental health following exposures during pregnancy. Evaluating the consequences of gestational PFAS exposures on maternal health is essential, because approximately 1 in 10 women experience postpartum depression, often with increased anxiety. To address this gap, dams were exposed to a low dose, 0.1 mg/kg, of perfluorooctanoic acid (PFOA) from gestational day 0 to birth. Maternal behavior was then observed from postnatal days 5-9, and "anxiety-like" behavior was measured using open field spontaneous locomotor behavior and elevated plus maze following weaning. No difference was observed in the litter size or sex of offspring. Gestational PFOA exposure altered maternal behavior. Despite similar nursing durations, PFOA dams spent more time nursing in a flat posture and on their side, and less time in kyphosis. Despite significantly quicker first contact, PFOA dams did not return pups to the nest quicker, indicating reduced retrieval latency. At weaning, dams displayed increased "anxiety-like" behaviors in the elevated plus maze with a significantly higher mean duration in the closed arms and reduced choice frequency with significantly lower number of entries in the closed and open arms. PFOA dams showed reductions in ambulatory movement across the session. Pregnancy exposure to PFOA altered both maternal and "anxiety-like" behavior in dams. Additional assays focused on depression-associated behaviors, such as forced swim, anhedonia, and social preference, will further delineate behavioral mechanisms. Further research on the effects of environmental contaminant exposures during pregnancy should investigate how co-exposures to other risk factors, such as stress, may enhance behavioral toxicity. Understanding how environmental contaminant exposure during pregnancy effects maternal depression-associated, and/or "anxiety-like" behavior is necessary for the public health protection of women.

3.
Part Fibre Toxicol ; 19(1): 56, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35945578

ABSTRACT

BACKGROUND: Air pollution has been associated with neurodevelopmental disorders in epidemiological studies. In our studies in mice, developmental exposures to ambient ultrafine particulate (UFP) matter either postnatally or gestationally results in neurotoxic consequences that include brain metal dyshomeostasis, including significant increases in brain Fe. Since Fe is redox active and neurotoxic to brain in excess, this study examined the extent to which postnatal Fe inhalation exposure, might contribute to the observed neurotoxicity of UFPs. Mice were exposed to 1 µg/m3 Fe oxide nanoparticles alone, or in conjunction with sulfur dioxide (Fe (1 µg/m3) + SO2 (SO2 at 1.31 mg/m3, 500 ppb) from postnatal days 4-7 and 10-13 for 4 h/day. RESULTS: Overarching results included the observations that Fe + SO2 produced greater neurotoxicity than did Fe alone, that females appeared to show greater vulnerability to these exposures than did males, and that profiles of effects differed by sex. Consistent with metal dyshomeostasis, both Fe only and Fe + SO2 exposures altered correlations of Fe and of sulfur (S) with other metals in a sex and tissue-specific manner. Specifically, altered metal levels in lung, but particularly in frontal cortex were found, with reductions produced by Fe in females, but increases produced by Fe + SO2 in males. At PND14, marked changes in brain frontal cortex and striatal neurotransmitter systems were observed, particularly in response to combined Fe + SO2 as compared to Fe only, in glutamatergic and dopaminergic functions that were of opposite directions by sex. Changes in markers of trans-sulfuration in frontal cortex likewise differed in females as compared to males. Residual neurotransmitter changes were limited at PND60. Increases in serum glutathione and Il-1a were female-specific effects of combined Fe + SO2. CONCLUSIONS: Collectively, these findings suggest a role for the Fe contamination in air pollution in the observed neurotoxicity of ambient UFPs and that such involvement may be different by chemical mixture. Translation of such results to humans requires verification, and, if found, would suggest a need for regulation of Fe in air for public health protection.


Subject(s)
Air Pollutants , Air Pollution , Neurotoxicity Syndromes , Air Pollutants/analysis , Air Pollutants/toxicity , Animals , Brain , Female , Humans , Iron/pharmacology , Male , Metals , Mice , Neurotoxicity Syndromes/etiology , Neurotransmitter Agents/pharmacology , Particulate Matter/analysis , Particulate Matter/toxicity
4.
Toxics ; 9(12)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34941779

ABSTRACT

Pregnancy, a period of increased metabolic demands coordinated by fluctuating steroid hormones, is an understudied critical window of disease susceptibility for later-life maternal metabolic health. Epidemiological studies have identified associations between exposures to various endocrine-disrupting chemicals (EDCs) with an increased risk for metabolic syndrome, obesity, and diabetes. Whether such adverse outcomes would be heightened by concurrent exposures to multiple EDCs during pregnancy, consistent with the reality that human exposures are to EDC mixtures, was examined in the current pilot study. Mouse dams were orally exposed to relatively low doses of four EDCs: (atrazine (10 mg/kg), bisphenol-A (50 µg/kg), perfluorooctanoic acid (0.1 mg/kg), 2,3,7,8-tetrachlorodibenzo-p-dioxin (0.036 µg/kg)), or the combination (MIX), from gestational day 7 until birth or for an equivalent 12 days in non-pregnant females. Glucose intolerance, serum lipids, weight, and visceral adiposity were assessed six months later. MIX-exposed dams exhibited hyperglycemia with a persistent elevation in blood glucose two hours after glucose administration in a glucose tolerance test, whereas no such effects were observed in MIX-exposed non-pregnant females. Correspondingly, MIX dams showed elevated serum low-density lipoprotein (LDL). There were no statistically significant differences in weight or visceral adipose; MIX dams showed an average visceral adipose volume to body volume ratio of 0.09, while the vehicle dams had an average ratio of 0.07. Collectively, these findings provide biological plausibility for the epidemiological associations observed between EDC exposures during pregnancy and subsequent maternal metabolic dyshomeostasis, and proof of concept data that highlight the importance of considering complex EDC mixtures based of off common health outcomes, e.g., for increased risk for later-life maternal metabolic effects following pregnancy.

5.
Pediatr Qual Saf ; 6(4): e449, 2021.
Article in English | MEDLINE | ID: mdl-34345757

ABSTRACT

INTRODUCTION: The 2005 Patient Safety and Quality Improvement Act, actualized as a Learning Network (LN), has enabled the Child Health Patient Safety Organization (PSO) to play a vital and novel role in improving the quality and safety of care. This article describes the Child Health PSO and proposes PSOs as a new construct for LNs. METHODS: A PSOs ability to affect patient care depends on member organizations' integration of PSO output into their individual Learning Healthcare Systems. Therefore, the Child Health PSO developed tenets of an LN to improve member engagement in PSO outputs. RESULTS: All Child Health PSO members participate in case-based learning, requiring ongoing and robust participation by all members. The engagement has been strong, with 86% of children's hospitals achieving a case learning activity metric and 60% of children's hospitals submitting cases. From this LNs perspective, 53% of children's hospitals are considered highly engaged. CONCLUSIONS: In the last 10 years, the Child Health PSO has evolved as a viable LN and, to sustain this, has set a target of 100% of participating children's hospitals being highly engaged. The previously inconceivable notion of sharing information to improve patient safety among hospitals is now an expected result of the formation of trusting relationships under a federally certified PSO. According to participants, collaboration is an essential element that empowers individual children's hospitals to eliminate preventable harm.

6.
Toxicol Sci ; 180(1): 175-185, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33372994

ABSTRACT

Epidemiological and experimental studies have associated oral and systemic exposures to the herbicide paraquat (PQ) with Parkinson's disease. Despite recognition that airborne particles and solutes can be directly translocated to the brain via olfactory neurons, the potential for inhaled PQ to cause olfactory impairment has not been investigated. This study sought to determine if prolonged low-dose inhalation exposure to PQ would lead to disposition to the brain and olfactory impairment, a prodromal feature of Parkinson's disease. Adult male and female C57BL/6J mice were exposed to PQ aerosols in a whole-body inhalation chamber for 4 h/day, 5 days/week for 4 weeks. Subsets of mice were sacrificed during and after exposure and PQ concentrations in various brain regions (olfactory bulb, striatum, midbrain, and cerebellum) lung, and kidney were quantified via mass spectrometry. Alterations in olfaction were examined using an olfactory discrimination paradigm. PQ inhalation resulted in an appreciable burden in all examined brain regions, with the highest burden observed in the olfactory bulb, consistent with nasal olfactory uptake. PQ was also detected in the lung and kidney, yet PQ levels in all tissues returned to control values within 4 weeks post exposure. PQ inhalation caused persistent male-specific deficits in olfactory discrimination. No effects were observed in females. These data support the importance of route of exposure in determination of safety estimates for neurotoxic pesticides, such as PQ. Accurate estimation of the relationship between exposure and internal dose is critical for risk assessment and public health protection.


Subject(s)
Herbicides , Olfaction Disorders , Animals , Brain , Female , Herbicides/toxicity , Inhalation Exposure/adverse effects , Male , Mice , Mice, Inbred C57BL , Olfaction Disorders/chemically induced , Paraquat/toxicity
7.
Neurotoxicology ; 81: 1-10, 2020 12.
Article in English | MEDLINE | ID: mdl-32735808

ABSTRACT

Developmental methylmercury (MeHg) exposure can have lasting consequences on neural development and motor function across the lifespan. Recent evidence for MeHg targeting of myogenic pathways has drawn attention to the possibility that developing skeletal muscle plays a role in the motor deficits stemming from early life MeHg exposure. In this study we examined a potential role for muscle in influencing MeHg developmental toxicity in offspring of female mice exposed to MeHg via drinking water. Dams had access to 0, 0.5 or 5.0 ppm MeHg chloride in drinking water from two weeks prior to mating through weaning. Blood, brain and muscle tissue was harvested from dams at weaning and pups at postnatal days (PND) 6, 21 and 60 for analysis of total Hg. Muscle tissue sections were examined with histological stains. Behavioral testing of offspring was conducted at PND 60 and included locomotor activity, inverted screen, grip strength and rotarod tests to assess motor function. Total Hg (tHg) levels in dam muscles at weaning were 1.7-3-fold higher than Hg levels in blood or brain. In PND6 male and female pups, muscle and brain tHg levels were 2 to 4-fold higher than blood tHg. Brain tHg levels decreased more rapidly than muscle tHg levels between PND 6 and 21. Premised on modeling of growth dilution, brain tissue demonstrated an elimination of tHg while muscle tissue exhibited a net uptake of tHg between PND 6 and 21. Despite overall elevated Hg levels in developing muscle, no gross morphological or cytological phenotypes were observed in muscle at PND 60. At the higher MeHg dose, grip strength was reduced in both females and males at PND 60, whereas only male specific deficits were observed in locomotor activity and inverted screen tests with marginally significant deficits on rotarod. These findings highlight a potential role for developing skeletal muscle in mediating the neuromuscular insult of early life MeHg exposure.


Subject(s)
Mercury Poisoning, Nervous System/physiopathology , Methylmercury Compounds , Motor Activity , Muscle, Skeletal/growth & development , Prenatal Exposure Delayed Effects , Age Factors , Animals , Body Burden , Brain/metabolism , Disease Models, Animal , Female , Gestational Age , Hand Strength , Locomotion , Male , Maternal Exposure , Mercury Poisoning, Nervous System/etiology , Mercury Poisoning, Nervous System/metabolism , Methylmercury Compounds/blood , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Pregnancy , Rotarod Performance Test , Sex Factors
8.
Environ Health Perspect ; 128(2): 27001, 2020 02.
Article in English | MEDLINE | ID: mdl-32073883

ABSTRACT

BACKGROUND: Lead (Pb) exposure and prenatal stress (PS) during development are co-occurring risk factors with shared biological substrates. PS has been associated with transgenerational passage of altered behavioral phenotypes, whereas the transgenerational behavioral or biochemical consequences of Pb exposure, and modification of any such effects by PS, is unknown. OBJECTIVES: The present study sought to determine whether Pb, PS, or combined Pb and PS exposures produced adverse transgenerational consequences on brain and behavior. METHODS: Maternal Pb and PS exposures were carried out in F0 mice. Outside breeders were used at each subsequent breeding, producing four F1-F2 lineages: [F1 female-F2 female (FF), FM (male), MF, and MM]. F3 offspring were generated from each of these lineages and examined for outcomes previously found to be altered by Pb, PS, or combined Pb and PS in F1 offspring: behavioral performance [fixed-interval (FI) schedule of food reward, locomotor activity, and anxiety-like behavior], dopamine function [striatal expression of tyrosine hydroxylase (Th)], glucocorticoid receptor (GR) and plasma corticosterone, as well as brain-derived neurotrophic factor (BDNF) and total percent DNA methylation of Th and Bdnf genes in the frontal cortex and hippocampus. RESULTS: Maternal F0 Pb exposure produced runting in F3 offspring. Considered across lineages, F3 females exhibited Pb-related alterations in behavior, striatal BDNF levels, frontal cortical Th total percentage DNA methylation levels and serum corticosterone levels, whereas F3 males showed Pb- and PS-related alterations in behavior and total percent DNA methylation of hippocampal Bdnf. However, numerous lineage-specific effects were observed, most of greater magnitude than those observed across lineages, with outcomes differing by F3 sex. DISCUSSION: These findings support the possibility that exposures of previous generations to Pb or PS may influence the brain and behavior of future generations. Observed changes were sex-dependent, with F3 females showing multiple changes through Pb-exposed lineages. Lineage effects may occur through maternal responses to pregnancy, altered maternal behavior, epigenetic modifications, or a combination of mechanisms, but they have significant public health ramifications regardless of mechanism. https://doi.org/10.1289/EHP4977.


Subject(s)
Environmental Pollutants/blood , Lead/blood , Animals , Brain/physiopathology , Environmental Pollutants/toxicity , Female , Hippocampus/metabolism , Lead/toxicity , Male , Maternal Exposure , Mice , Pregnancy , Sex Factors , Stress, Physiological
9.
Toxicol Pathol ; 47(8): 976-992, 2019 12.
Article in English | MEDLINE | ID: mdl-31610749

ABSTRACT

Epidemiological studies report associations between air pollution (AP) exposures and several neurodevelopmental disorders including autism, attention deficit disorder, and cognitive delays. Our studies in mice of postnatal (human third trimester brain equivalent) exposures to concentrated ambient ultrafine particles (CAPs) provide biological plausibility for these associations, producing numerous neuropathological and behavioral features of these disorders, including male-biased vulnerability. These findings raise questions about the specific components of AP that underlie its neurotoxicity, which our studies suggest could involve trace elements as candidate neurotoxicants. X-ray fluorescence analyses of CAP chamber filters confirm contamination of AP exposures by multiple elements, including iron (Fe) and sulfur (S). Correspondingly, laser ablation inductively coupled plasma mass spectrometry of brains of male mice indicates marked postexposure elevations of Fe and S and other elements. Elevations of brain Fe and S in particular are consistent with potential ferroptotic, oxidative stress, and altered antioxidant capacity-based mechanisms of CAPs-induced neurotoxicity, supported by observations of increased serum oxidized glutathione and increased neuronal cell death in nucleus accumbens with no corresponding significant increase in caspase-3, in male brains following postnatal CAP exposures. Understanding the role of trace element contaminants of particulate matter AP as a source of neurotoxicity is critical for public health protection.


Subject(s)
Air Pollutants/toxicity , Brain/drug effects , Inhalation Exposure/adverse effects , Particulate Matter/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Air Pollutants/chemistry , Animals , Animals, Newborn , Brain/growth & development , Brain/metabolism , Brain/pathology , Dose-Response Relationship, Drug , Female , Male , Mice, Inbred C3H , Particulate Matter/chemistry , Pregnancy , Sex Characteristics
10.
Part Fibre Toxicol ; 16(1): 10, 2019 02 18.
Article in English | MEDLINE | ID: mdl-30777081

ABSTRACT

BACKGROUND: Recent epidemiological studies indicate early-life exposure to air pollution is associated with adverse neurodevelopmental outcomes. Previous studies investigating neonatal exposure to ambient fine and ultrafine particles have shown sex specific inflammation-linked pathological changes and protracted learning deficits. A potential contributor to the adverse phenotypes from developmental exposure to particulate matter observed in previous studies may be elemental carbon, a well-known contributor to pollution particulate. The present study is an evaluation of pathological and protracted behavioral alterations in adulthood following subacute neonatal exposure to ultrafine elemental carbon. C57BL/6J mice were exposed to ultrafine elemental carbon at 50 µg/m3 from postnatal days 4-7 and 10-13 for 4 h/day. Behavioral outcomes measured were locomotor activity, novel object recognition (short-term memory), elevated plus maze (anxiety-like behavior), fixed interval (FI) schedule of food reward (learning, timing) and differential reinforcement of low rate (DRL) schedule of food reward (impulsivity, inability to inhibit responding). Neuropathology was assessed by measures of inflammation (glial fibrillary-acidic protein), myelin basic protein expression in the corpus callosum, and lateral ventricle area. RESULTS: Twenty-four hours following the final exposure day, no significant differences in anogenital distance, body weight or central nervous system pathological markers were observed in offspring of either sex. Nor were significant changes observed in novel object recognition, elevated plus maze performance, FI, or DRL schedule-controlled behavior in either females or males. CONCLUSION: The limited effect of neonatal exposure to ultrafine elemental carbon suggests this component of air pollution is not a substantial contributor to the behavioral alterations and neuropathology previously observed in response to ambient pollution particulate exposures. Rather, other more reactive constituent species, organic and/or inorganic, gas-phase components, or combinations of constituents may be involved. Defining these neurotoxic components is critical to the formulation of better animal models, more focused mechanistic assessments, and potential regulatory policies for air pollution.


Subject(s)
Air Pollutants/toxicity , Behavior, Animal/drug effects , Carbon/toxicity , Central Nervous System/drug effects , Inhalation Exposure/adverse effects , Nanoparticles/toxicity , Animals , Animals, Newborn , Biomarkers/metabolism , Central Nervous System/growth & development , Central Nervous System/metabolism , Central Nervous System/pathology , Female , Glial Fibrillary Acidic Protein/metabolism , Lung/drug effects , Lung/growth & development , Lung/pathology , Male , Mice, Inbred C57BL , Particle Size
11.
Neurotoxicol Teratol ; 70: 51-59, 2018.
Article in English | MEDLINE | ID: mdl-30316930

ABSTRACT

Epidemiological evidence indicates an association between early-life exposure to air pollution and preterm birth. Thus, it is essential to address the subsequent vulnerability of preterm infants, who are exposed to unique factors at birth including hyperoxia, and subsequently to air pollution. Health effects of air pollution relate to particle size and the ultrafine particulate component (<100 nm) is considered the most reactive. We previously reported neonatal mice exposed to hyperoxia (60% oxygen), mimicking preterm oxygen supplementation, for the first 4 days of life, followed by exposure to concentrated ambient ultrafine particles (CAPS) from postnatal day (PND) 4-7 and 10-13 exhibited deficits in acquisition of performance on a fixed interval (FI) schedule of reinforcement, a behavioral paradigm rewarding the first response at the end of a fixed interval of time. Specifically, mice exposed to hyperoxia followed by CAPS continued to respond earlier in the interval than controls, suggesting deficits in acquisition of timing of the interval. To further examine the extent of cognitive deficits produced by hyperoxia and CAPs exposures, performance under an intra- extradimensional shift discrimination paradigm was implemented, requiring the ability to respond to shifting rules for reward. Under these conditions, developmental exposure to hyperoxia and CAPS increased errors on both the reversal and extradimensional (ED) tasks in males but not females. Furthermore it altered the ratio of glutamate and GABA neurotransmitters in the frontal cortex, a region known to mediate cognitive flexibility, were observed immediately following neonatal hyperoxia and CAPS exposure on post-natal day 14 but not following behavioral experience. Collectively, the findings from this study suggests that combined developmental exposures to hyperoxia and CAPS leads to protracted and enhanced learning deficits consistent with cognitive inflexibility in males exclusively.


Subject(s)
Air Pollutants/toxicity , Cognition Disorders/chemically induced , Cognition/drug effects , Hyperoxia/complications , Animals , Cognition/physiology , Female , Hyperoxia/metabolism , Learning/physiology , Male , Mice , Mice, Inbred C57BL , Particulate Matter/toxicity
12.
Neurotoxicology ; 68: 203-211, 2018 09.
Article in English | MEDLINE | ID: mdl-30144459

ABSTRACT

Epidemiological studies have reported associations of air pollution exposures with various neurodevelopmental disorders such as autism spectrum disorder (ASD), attention deficit and schizophrenia, all of which are male-biased in prevalence. Our studies of early postnatal exposure of mice to the ultrafine particle (UFP) component of air pollution, considered the most reactive component, provide support for these epidemiological associations, demonstrating male-specific or male-biased neuropathological changes and cognitive and impulsivity deficits consistent with these disorders. Since these neurodevelopmental disorders also include altered social behavior and communication, the current study examined the ability of developmental UFP exposure to reproduce these social behavior deficits and to determine whether any observed alterations reflected changes in steroid hormone concentrations. Elevated plus maze, social conditioned place preference, and social novelty preference were examined in adult mice that had been exposed to concentrated (10-20x) ambient UFPs averaging approximately 45 ug/m3 particle mass concentrations from postnatal day (PND) 4-7 and 10-13 for 4 h/day. Changes in serum testosterone (T) and corticosterone where measured at postnatal day (P)14 and approximately P120. UFP exposure decreased serum T concentrations on PND 14 and social nose-to-nose sniff rates with novel males in adulthood, suggesting social communication deficits in unfamiliar social contexts. Decreased sniff rates were not accounted for by alterations in fear-mediated behaviors and occurred without overt deficits in social preference, recognition or communication with a familiar animal or alterations in corticosterone. Adult T serum concentrations were positively correlated with nose to nose sniff rates. Collectively, these studies confirm another feature of male-biased neurodevelopmental disorders following developmental exposures to even very low levels of UFP air pollution that could be related to alterations in sex steroid programming of brain function.


Subject(s)
Exploratory Behavior , Particulate Matter/toxicity , Social Behavior , Testosterone/blood , Animals , Behavior, Animal , Corticosterone , Female , Male , Mice, Inbred C57BL , Particle Size , Risk Factors
13.
Horm Behav ; 101: 36-49, 2018 05.
Article in English | MEDLINE | ID: mdl-29355495

ABSTRACT

Metals, including lead (Pb), methylmercury (MeHg) and arsenic (As), are long-known developmental neurotoxicants. More recently, environmental context has been recognized to modulate metals toxicity, including nutritional state and stress exposure. Modulation of metal toxicity by stress exposure can occur through shared targeting of endocrine systems, such as the hypothalamic-pituitary-adrenal axis (HPA). Our previous rodent research has identified that prenatal stress (PS) modulates neurotoxicity of two endocrine active metals (EAMs), Pb and MeHg, by altering HPA and CNS systems disrupting behavior. Here, we review this research and further test the hypothesis that prenatal stress modulates metals neurotoxicity by expanding to test the effect of developmental As ±â€¯PS exposure. Serum corticosterone and behavior was assessed in offspring of dams exposed to As ±â€¯PS. PS increased female offspring serum corticosterone at birth, while developmental As exposure decreased adult serum corticosterone in both sexes. As + PS induced reductions in locomotor activity in females and reduced response rates on a Fixed Interval schedule of reinforcement in males, with the latter suggesting unique learning deficits only in the combined exposure. As-exposed males showed increased time in the open arms of an elevated plus maze and decreased novel object recognition whereas females did not. These data further confirm the hypothesis that combined exposure to chemical (EAMs) and non-chemical (PS) stressors results in enhanced neurobehavioral toxicity. Given that humans are exposed to multiple environmental risk factors that alter endocrine function in development, such models are critical for risk assessment and public health protection, particularly for children.


Subject(s)
Behavior, Animal/drug effects , Endocrine Disruptors/toxicity , Mental Disorders/etiology , Metals/toxicity , Prenatal Exposure Delayed Effects , Stress, Psychological , Animals , Animals, Newborn , Arsenic/toxicity , Corticosterone/blood , Female , Hypothalamo-Hypophyseal System/drug effects , Hypothalamo-Hypophyseal System/physiopathology , Male , Mental Disorders/chemically induced , Mental Disorders/physiopathology , Mice , Mice, Inbred C57BL , Pituitary-Adrenal System/drug effects , Pituitary-Adrenal System/physiopathology , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/physiopathology , Stress, Psychological/complications , Stress, Psychological/physiopathology
14.
Neurotoxicol Teratol ; 56: 75-80, 2016.
Article in English | MEDLINE | ID: mdl-27094606

ABSTRACT

Prenatal stress and nutrition are well-known to alter a broad range of physiological systems, notably metabolic, endocrine and neurobehavioral function. Commonly used methods for oral administration of xenobiotics can, by acting as a stressor or altering normal nutrition intake, alter these physiological systems as well. Taken together, oral administration methods may unintentionally introduce confounding physiological effects that can mask or enhance toxicity of xenobiotics, particularly if they share biological targets. Consequently, it should be preferable to develop alternative methods without these potential confounds. The aim of this study was to determine the suitability of mealworms as an alternative treat-based method to deliver xenobiotics via the orogastric route. Accurate oral administration is contingent on motivation and preference; mice reliably preferred mealworms over wafer cookie treats. Further, ingestion of wafer cookies significantly increased mouse blood glucose levels, whereas unaltered mealworms produced no such change. Mealworms functioned effectively to orally administer glucose, as glucose-spiked mealworms produced a rise in blood glucose equivalent to the ingestion of the wafer cookie. Mealworms did not interfere with the physiological function of orally administered d-amphetamine, as both mealworm and oral gavage administered d-amphetamine showed similar alterations in locomotor behavior (mice did not fully consume d-amphetamine-dosed cookies and thus could not be compared). Collectively, the findings indicate that mealworms are a preferred and readily consumed treat, which importantly mimics environmental-relevant nutritional intake, and mealworms per se do not alter glucose metabolic pathways. Additionally, mealworms accurately delivered xenobiotics into blood circulation and did not interfere with the physiological function of administered xenobiotics. Thus mealworm-based oral administration may be a preferable and accurate route of xenobiotic administration that eliminates physiological alterations associated with other methods of delivery.


Subject(s)
Administration, Oral , Food Preferences , Self Administration , Xenobiotics/administration & dosage , Animals , Blood Glucose , Choice Behavior , Dextroamphetamine/administration & dosage , Female , Glucose/administration & dosage , Male , Mice, Inbred C57BL , Motor Activity/drug effects , Tenebrio
15.
Neurotoxicology ; 45: 121-30, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25454719

ABSTRACT

Humans are increasingly and consistently exposed to a variety of endocrine disrupting chemicals (EDCs), chemicals that have been linked to neurobehavioral disorders such as ADHD and autism. Many of such EDCs have been shown to adversely influence brain mesocorticolimbic systems raising the potential for cumulative toxicity. As such, understanding the effects of developmental exposure to mixtures of EDCs is critical to public health protection. Consequently, this study compared the effects of a mixture of four EDCs to their effects alone to examine potential for enhanced toxicity, using behavioral domains and paradigms known to be mediated by mesocorticolimbic circuits (fixed interval (FI) schedule controlled behavior, novel object recognition memory and locomotor activity) in offspring of pregnant mice that had been exposed to vehicle or relatively low doses of four EDCs, atrazine (ATR - 10mg/kg), perfluorooctanoic acid (PFOA - 0.1mg/kg), bisphenol-A (BPA - 50 µg/kg), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD - 0.25 µg/kg) alone or combined in a mixture (MIX), from gestational day 7 until weaning. EDC-treated males maintained significantly higher horizontal activity levels across three testing sessions, indicative of delayed habituation, whereas no effects were found in females. Statistically significant effects of MIX were seen in males, but not females, in the form of increased FI response rates, in contrast to reductions in response rate with ATR, BPA and TCDD, and reduced short term memory in the novel object recognition paradigm. MIX also reversed the typically lower neophobia levels of males compared to females. With respect to individual EDCs, TCDD produced notable increases in FI response rates in females, and PFOA significantly increased ambulatory locomotor activity in males. Collectively, these findings show the potential for enhanced behavioral effects of EDC mixtures in males and underscore the need for animal studies to fully investigate mixtures, including chemicals that converge on common physiological substrates to examine potential mechanisms of toxicity with full dose effect curves to assist in interpretations of relevant mechanisms.


Subject(s)
Behavior, Animal/drug effects , Endocrine Disruptors/toxicity , Prenatal Exposure Delayed Effects/psychology , Animals , Atrazine/administration & dosage , Atrazine/toxicity , Benzhydryl Compounds/administration & dosage , Benzhydryl Compounds/toxicity , Caprylates/administration & dosage , Caprylates/toxicity , Dioxins/administration & dosage , Dioxins/toxicity , Drug Combinations , Endocrine Disruptors/administration & dosage , Female , Fluorocarbons/administration & dosage , Fluorocarbons/toxicity , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Phenols/administration & dosage , Phenols/toxicity , Pregnancy , Recognition, Psychology/drug effects , Reinforcement Schedule , Sex Factors
16.
Environ Health Perspect ; 122(9): 939-45, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24901756

ABSTRACT

BACKGROUND: Air pollution has been associated with adverse neurological and behavioral health effects in children and adults. Recent studies link air pollutant exposure to adverse neurodevelopmental outcomes, including increased risk for autism, cognitive decline, ischemic stroke, schizophrenia, and depression. OBJECTIVES: We sought to investigate the mechanism(s) by which exposure to ultrafine concentrated ambient particles (CAPs) adversely influences central nervous system (CNS) development. METHODS: We exposed C57BL6/J mice to ultrafine (< 100 nm) CAPs using the Harvard University Concentrated Ambient Particle System or to filtered air on postnatal days (PNDs) 4-7 and 10-13, and the animals were euthanized either 24 hr or 40 days after cessation of exposure. Another group of males was exposed at PND270, and lateral ventricle area, glial activation, CNS cytokines, and monoamine and amino acid neurotransmitters were quantified. RESULTS: We observed ventriculomegaly (i.e., lateral ventricle dilation) preferentially in male mice exposed to CAPs, and it persisted through young adulthood. In addition, CAPs-exposed males generally showed decreases in developmentally important CNS cytokines, whereas in CAPs-exposed females, we observed a neuroinflammatory response as indicated by increases in CNS cytokines. We also saw changes in CNS neurotransmitters and glial activation across multiple brain regions in a sex-dependent manner and increased hippocampal glutamate in CAPs-exposed males. CONCLUSIONS: We observed brain region- and sex-dependent alterations in cytokines and neurotransmitters in both male and female CAPs-exposed mice. Lateral ventricle dilation (i.e., ventriculomegaly) was observed only in CAPs-exposed male mice. Ventriculomegaly is a neuropathology that has been associated with poor neurodevelopmental outcome, autism, and schizophrenia. Our findings suggest alteration of developmentally important neurochemicals and lateral ventricle dilation may be mechanistically related to observations linking ambient air pollutant exposure and adverse neurological/neurodevelopmental outcomes in humans.


Subject(s)
Air Pollutants/toxicity , Brain/drug effects , Brain/growth & development , Hydrocephalus/chemically induced , Neuroglia , Particulate Matter/toxicity , Air Pollution/statistics & numerical data , Animals , Cytokines/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Neurotransmitter Agents/metabolism , Particle Size , Sex Factors
17.
Neurotoxicology ; 41: 80-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24486957

ABSTRACT

Current evidence suggests suceptibility of both the substantia nigra and striatum to exposure to components of air pollution. Further, air pollution has been associated with increased risk of PD diagnsosis in humans or PD-like pathology in animals. This study examined whether exposure of mice to concentrated ambient ultrafine particles (CAPS; <100nm diameter) during the first two weeks of life would alter susceptibility to induction of the Parkinson's disease phenyotype (PDP) in a pesticide-based paraquat and maneb (PQ+MB) model during adulthood utilizing i.p. injections of 10mg/kg PQ and 30mg/kg MB 2× per week for 6 weeks. Evidence of CAPS-induced enhancement of the PQ+MB PDP was limited primarily to delayed recovery of locomotor activity 24 post-injection of PQ+MB that could be related to alterations in striatal GABA inhibitory function. Absence of more extensive interactions might also reflect the finding that CAPS and PQ+MB appeared to differentially target the nigrostriatal dopamine and amino acid systems, with CAPS impacting striatum and PQ+MB impacting dopamine-glutamate function in midbrain; both CAPS and PQ+MB elevated glutamate levels in these specific regions, consistent with potential excitotoxicity. These findings demonstrate the ability of postnatal CAPS to produce locomotor dysfunction and dopaminergic and glutamateric changes, independent of PQ+MB, in brain regions involved in the PDP.


Subject(s)
Air Pollutants/toxicity , Fungicides, Industrial/toxicity , Herbicides/toxicity , Maneb/toxicity , Paraquat/toxicity , Parkinson Disease/etiology , Animals , Animals, Newborn , Cell Count , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Corpus Striatum/pathology , Disease Models, Animal , Drug Combinations , Female , Male , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Nanoparticles/toxicity , Parkinson Disease/pathology , Parkinson Disease/physiopathology , Particulate Matter , Silicones/toxicity , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Substantia Nigra/pathology , Tyrosine 3-Monooxygenase/metabolism
18.
Neurotoxicology ; 41: 123-40, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24502960

ABSTRACT

Methylmercury (MeHg) and prenatal stress (PS) are risk factors for neurotoxicity that may co-occur in human populations. Because they also share biological substrates and can produce common behavioral deficits, this study examined their joint effects on behavioral and neurochemical effects in male and female rats. Dams had access to 0, 0.5 or 2.5ppm MeHg chloride drinking water from two to three weeks prior to breeding through weaning. Half of the dams in each of these treatment groups also underwent PS on gestational days 16-17. This yielded 6 groups/gender: 0-NS, 0-PS, 0.5-NS, 0.5-PS, 2.5-NS, and 2.5-PS. Behavioral testing began in young adulthood and included fixed interval (FI) schedule-controlled behavior, novel object recognition (NOR) and locomotor activity, behaviors previously demonstrated to be sensitive to MeHg and/or mediated by brain mesocorticolimbic dopamine glutamate systems targeted by both MeHg and PS. Behavioral deficits were more pronounced in females and included impaired NOR recognition memory only under conditions of combined MeHg and PS, while non-monotonic reductions in FI response rates occurred, with greatest effects at the 0.5ppm concentration; the less reduced 2.5ppm FI response rates were further reduced under conditions of PS (2.5-PS). Correspondingly, many neurochemical changes produced by MeHg were only seen under conditions of PS, particularly in striatum in males and in hippocampus and nucleus accumbens in females, regions of significance to the mediation of FI and NOR performance. Collectively these findings demonstrate sex-dependent and non-monotonic effects of developmental MeHg exposure that can be unmasked or enhanced by PS, particularly for behavioral outcomes in females, but for both sexes in neurochemical changes, that were observed at MeHg exposure concentrations that did not influence either reproductive outcomes or maternal behavior. Thus, assessment of risks associated with MeHg may be underestimated in the absence of other extant risk factors with which it may share common substrates and effects.


Subject(s)
Methylmercury Compounds/toxicity , Neurotoxicity Syndromes/etiology , Prenatal Exposure Delayed Effects/physiopathology , Stress, Psychological/complications , Animals , Animals, Newborn , Brain/metabolism , Conditioning, Operant/drug effects , Conditioning, Operant/physiology , Corticosterone/blood , Disease Models, Animal , Exploratory Behavior/drug effects , Female , Male , Maternal Behavior/physiology , Maternal Behavior/psychology , Methylmercury Compounds/metabolism , Motor Activity/drug effects , Pregnancy , Rats , Rats, Long-Evans , Recognition, Psychology/drug effects , Sex Factors
19.
Toxicol Sci ; 131(1): 194-205, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22930682

ABSTRACT

Behavioral experience (BE) can critically influence later behavior and brain function, but the central nervous system (CNS) consequences of most developmental neurotoxicants are examined in the absence of any such context. We previously demonstrated marked differences in neurotransmitter changes produced by developmental lead (Pb) exposure ± prenatal stress (PS) depending upon whether or not rats had been given BE (Cory-Slechta, D. A., Virgolini, M. B., Rossi-George, A., Weston, D., and Thiruchelvam, M. (2009). The current study examined the hypothesis that the nature of the BE itself would be a critical determinant of outcome in mice that had been continually exposed to 0 or 100 ppm Pb acetate in drinking water alone or in combination with prenatal restraint stress. Half of the offspring in each of the four resulting groups/gender were exposed to positively reinforced (food-rewarded Fixed Interval schedule-controlled behavior) or negatively reinforced (inescapable forced swim) BE. Brain monoamines and amino acids differed significantly in relation to BE, even in control animals, as did the trajectory of effects of Pb ± PS, particularly in frontal cortex, hippocampus (both genders), and midbrain (males). In males, Pb ± PS-related changes in neurotransmitters correlated with behavioral performance. These findings suggest that CNS consequences of developmental toxicants studied in the absence of a broader spectrum of BEs may not necessarily be predictive of human outcomes. Evaluating the role of specific BEs as a modulator of neurodevelopmental insults offers the opportunity to determine what specific BEs may ameliorate the associated impacts and can assist in establishing underlying neurobiological mechanisms.


Subject(s)
Behavior, Animal/drug effects , Brain/drug effects , Lead/toxicity , Prenatal Exposure Delayed Effects/psychology , Reinforcement, Psychology , Stress, Psychological/psychology , Animals , Brain/embryology , Brain/growth & development , Brain/metabolism , Corticosterone/blood , Female , Lead/blood , Male , Mice , Mice, Inbred C57BL , Neurotransmitter Agents/blood , Neurotransmitter Agents/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/metabolism , Restraint, Physical , Stress, Psychological/metabolism
20.
Environ Health Perspect ; 121(1): 32-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23063827

ABSTRACT

BACKGROUND: Recent epidemiological studies indicate negative associations between a diverse group of air pollutants and cognitive functioning in children and adults, and aspects of attention deficit in children. Neuroinflammation and oxidative stress are two putative biological mechanisms by which air pollutants may adversely affect the brain. OBJECTIVES: We sought to determine whether exposure to concentrated ambient particulate matter (CAPS) during the first 2 weeks of life, alone or again in adulthood, could alter responding for delayed reward, a critical component of human decision making. Greater preference for immediate reward has been implicated as a component of several psychiatric disorders, addiction, obesity, and attention deficit. METHODS: C57BL/6J mice were exposed to ultrafine particles (< 100 nm in aerodynamic diameter; CAPS) using the Harvard University Concentrated Ambient Particle System (HUCAPS) or filtered air in the postnatal period (days 4-7 and 10-13) with and without adult exposure over days 56-60. In adulthood, delay behavior was assessed using a fixed-ratio waiting-for-reward (FR wait) paradigm in which 25 responses (FR25) were required to initiate the waiting-for-reward component during which mice obtained "free" sucrose pellets with the stipulation that these "free" pellets were delivered at increasing delay intervals. RESULTS: Coupled with increased FR response rates, mice exposed to postnatal CAPS displayed increased FR resets that reinstated short delays, indicating a preference for shorter delays, despite the added response cost of the FR25. No associated changes in locomotor activity were observed. CONCLUSIONS: Postnatal CAPS exposure produces an enhanced bias towards immediate rewards, a risk factor for several central nervous system (CNS) disorders. This enhancement does not appear to be the result of hyperactivity. The findings underscore the need for further evaluation of air pollution effects on the CNS and its potential contribution to CNS diseases and disorders.


Subject(s)
Air Pollutants/toxicity , Particulate Matter/toxicity , Air Pollution/adverse effects , Animals , Decision Making/drug effects , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...