Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
J Infect Dis ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874098

ABSTRACT

Newly arrived refugees offer insights into malaria epidemiology in their countries of origin. We evaluated asymptomatic refugee children within 7 days of arrival in Uganda from South Sudan and the Democratic Republic of Congo (DRC) in 2022 for parasitemia, parasite species, and Plasmodium falciparum drug resistance markers. Asymptomatic P. falciparum infections were common in both populations. Co-infection with P. malariae was more common in DRC refugees. Prevalences of markers of aminoquinoline resistance (PfCRT K76T, PfMDR1 N86Y) were much higher in South Sudan refugees, of antifolate resistance (PfDHFR C59R and I164L, PfDHPS A437G and K540E) much higher in DRC refugees, and of artemisinin partial resistance (ART-R; PfK13 C469Y and A675V) moderate in both populations. Prevalences of most mutations differed from those seen in Ugandans attending health centers near the refugee centers. Refugee evaluations yielded insights into varied malaria epidemiology and identified markers of ART-R in two previously little-studied countries.

3.
Lancet Infect Dis ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38552654

ABSTRACT

Malaria remains one of the most important infectious diseases in the world, with the greatest burden in sub-Saharan Africa, primarily from Plasmodium falciparum infection. The treatment and control of malaria is challenged by resistance to most available drugs, but partial resistance to artemisinins (ART-R), the most important class for the treatment of malaria, was until recently confined to southeast Asia. This situation has changed, with the emergence of ART-R in multiple countries in eastern Africa. ART-R is mediated primarily by single point mutations in the P falciparum kelch13 protein, with several mutations present in African parasites that are now validated resistance mediators based on clinical and laboratory criteria. Major priorities at present are the expansion of genomic surveillance for ART-R mutations across the continent, more frequent testing of the efficacies of artemisinin-based regimens against uncomplicated and severe malaria in trials, more regular assessment of ex-vivo antimalarial drug susceptibilities, consideration of changes in treatment policy to deter the spread of ART-R, and accelerated development of new antimalarial regimens to overcome the impacts of ART-R. The emergence of ART-R in Africa is an urgent concern, and it is essential that we increase efforts to characterise its spread and mitigate its impact.

4.
medRxiv ; 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38352505

ABSTRACT

Background: Artemisinin partial resistance, mediated by mutations in the Plasmodium falciparum Kelch13 protein (K13), rapidly spread in South-East Asia (SEA), undermining antimalarial efficacies of artemisinin-based combination therapies (ACT). Validated K13 mutations have recently arisen in Africa, but rates of increase are not well characterized. Methods: We investigated K13 mutation prevalence at 16 sites in Uganda (2016-2022, 6586 samples), and five sites in SEA (2003-2018, 5465 samples) by calculating selection coefficients using Bayesian mixed-effect linear models. We then tested whether SEA K13 mutation prevalence could have been forecast accurately using up to the first five years of available data and forecast future K13 mutation prevalence in Uganda. Findings: The selection coefficient for the prevalence of relevant K13 mutations (441L, 469F/Y, 561H, 675V) was estimated at s=0·383 (95% CrI: 0·247 - 0·528) per year, a 38% relative prevalence increase. Selection coefficients across Uganda were s=0·968 (0·463 - 1·569) for 441L, s=0·153 (-0·445 - 0·727) for 469F, s=0·222 (-0·011 - 0·398) for 469Y, and s=0·152 (-0·023 - 0·312) for 675V. In SEA, the selection coefficient was s=-0·005 (-0·852 - 0·814) for 539T, s=0·574 (-0·092 - 1·201) for 580Y, and s=0·308 (0·089 - 0·536) for all validated K13 mutations. Forecast prevalences for Uganda assuming constant selection neared fixation (>95% prevalence) within a decade (2028-2033) for combined K13 mutations. Interpretation: The selection of K13 mutations in Uganda was at a comparable rate to that observed in SEA, suggesting K13 mutations may continue to increase quickly in Uganda. Funding: NIH R01AI156267, R01AI075045, and R01AI089674.

5.
Nat Rev Microbiol ; 22(6): 373-384, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38321292

ABSTRACT

Malaria, mostly due to Plasmodium falciparum infection in Africa, remains one of the most important infectious diseases in the world. Standard treatment for uncomplicated P. falciparum malaria is artemisinin-based combination therapy (ACT), which includes a rapid-acting artemisinin derivative plus a longer-acting partner drug, and standard therapy for severe P. falciparum malaria is intravenous artesunate. The efficacy of artemisinins and ACT has been threatened by the emergence of artemisinin partial resistance in Southeast Asia, mediated principally by mutations in the P. falciparum Kelch 13 (K13) protein. High ACT treatment failure rates have occurred when resistance to partner drugs is also seen. Recently, artemisinin partial resistance has emerged in Rwanda, Uganda and the Horn of Africa, with independent emergences of different K13 mutants in each region. In this Review, we summarize our current knowledge of artemisinin partial resistance and focus on the emergence of resistance in Africa, including its epidemiology, transmission dynamics and mechanisms. At present, the clinical impact of emerging resistance in Africa is unclear and most available evidence suggests that the efficacies of leading ACTs remain excellent, but there is an urgent need to better appreciate the extent of the problem and its consequences for the treatment and control of malaria.


Subject(s)
Antimalarials , Artemisinins , Drug Resistance , Malaria, Falciparum , Plasmodium falciparum , Artemisinins/therapeutic use , Artemisinins/pharmacology , Drug Resistance/genetics , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Malaria, Falciparum/epidemiology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Humans , Antimalarials/therapeutic use , Antimalarials/pharmacology , Africa/epidemiology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Mutation
7.
Antimicrob Agents Chemother ; 68(4): e0153423, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38411062

ABSTRACT

Malaria remains a leading cause of morbidity and mortality in Burkina Faso, which utilizes artemether-lumefantrine as the principal therapy to treat uncomplicated malaria and seasonal malaria chemoprevention with monthly sulfadoxine-pyrimethamine plus amodiaquine in children during the transmission season. Monitoring the activities of available antimalarial drugs is a high priority. We assessed the ex vivo susceptibility of Plasmodium falciparum to 11 drugs in isolates from patients presenting with uncomplicated malaria in Bobo-Dioulasso in 2021 and 2022. IC50 values were derived using a standard 72 h growth inhibition assay. Parasite DNA was sequenced to characterize known drug resistance-mediating polymorphisms. Isolates were generally susceptible, with IC50 values in the low-nM range, to chloroquine (median IC5010 nM, IQR 7.9-24), monodesethylamodiaquine (22, 14-46) piperaquine (6.1, 3.6-9.2), pyronaridine (3.0, 1.3-5.5), quinine (50, 30-75), mefloquine (7.1, 3.7-10), lumefantrine (7.1, 4.5-12), dihydroartemisinin (3.7, 2.2-5.5), and atovaquone (0.2, 0.1-0.3) and mostly resistant to cycloguanil (850, 543-1,290) and pyrimethamine (33,200, 18,400-54,200), although a small number of outliers were seen. Considering genetic markers of resistance to aminoquinolines, most samples had wild-type PfCRT K76T (87%) and PfMDR1 N86Y (95%) sequences. For markers of resistance to antifolates, established PfDHFR and PfDHPS mutations were highly prevalent, the PfDHPS A613S mutation was seen in 19% of samples, and key markers of high-level resistance (PfDHFR I164L; PfDHPS K540E) were absent or rare (A581G). Mutations in the PfK13 propeller domain known to mediate artemisinin partial resistance were not detected. Overall, our results suggest excellent susceptibilities to drugs now used to treat malaria and moderate, but stable, resistance to antifolates used to prevent malaria.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria, Falciparum , Malaria , Child , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium falciparum , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Artemether, Lumefantrine Drug Combination/therapeutic use , Folic Acid Antagonists/pharmacology , Burkina Faso , Artemether/therapeutic use , Pyrimethamine/pharmacology , Pyrimethamine/therapeutic use , Malaria/drug therapy , Lumefantrine/pharmacology , Lumefantrine/therapeutic use , Drug Combinations , Polymorphism, Genetic/genetics , Drug Resistance/genetics , Protozoan Proteins/genetics , Protozoan Proteins/therapeutic use
8.
Am J Trop Med Hyg ; 110(2): 209-213, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38150729

ABSTRACT

Much of our understanding of malaria transmission comes from mosquito feeding assays using Anopheles mosquitoes from colonies that are well adapted to membrane feeding. This raises the question whether results from colony mosquitoes lead to overestimates of outcomes in wild Anopheles mosquitoes. We successfully established an Anopheles colony using progeny of wild Anopheles gambiae s.s. mosquitoes (Busia mosquitoes) and directly compared their susceptibility to infection with Plasmodium falciparum with the widely used An. gambiae s.s. mosquitoes (Kisumu mosquitoes) using gametocyte-infected Ugandan donor blood. The proportion of infectious feeds did not differ between Busia (71.8%, 23/32) and Kisumu (68.8%, 22/32, P = 1.00) mosquitoes. When correcting for random effects of donor blood, we observed a 23% higher proportion of infected Busia mosquitoes than infected Kisumu mosquitoes (RR, 1.23; 95% CI, 1.10-1.38, P < 0.001). This study suggests that feeding assays with Kisumu mosquitoes do not overestimate outcomes in wild An. gambiae s.s. mosquitoes, the mosquito species most relevant to malaria transmission in Uganda.


Subject(s)
Anopheles , Malaria, Falciparum , Malaria , Humans , Animals , Plasmodium falciparum , Uganda , Mosquito Vectors
9.
N Engl J Med ; 389(8): 722-732, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37611122

ABSTRACT

BACKGROUND: Partial resistance of Plasmodium falciparum to the artemisinin component of artemisinin-based combination therapies, the most important malaria drugs, emerged in Southeast Asia and now threatens East Africa. Partial resistance, which manifests as delayed clearance after therapy, is mediated principally by mutations in the kelch protein K13 (PfK13). Limited longitudinal data are available on the emergence and spread of artemisinin resistance in Africa. METHODS: We performed annual surveillance among patients who presented with uncomplicated malaria at 10 to 16 sites across Uganda from 2016 through 2022. We sequenced the gene encoding kelch 13 (pfk13) and analyzed relatedness using molecular methods. We assessed malaria metrics longitudinally in eight Ugandan districts from 2014 through 2021. RESULTS: By 2021-2022, the prevalence of parasites with validated or candidate resistance markers reached more than 20% in 11 of the 16 districts where surveillance was conducted. The PfK13 469Y and 675V mutations were seen in far northern Uganda in 2016-2017 and increased and spread thereafter, reaching a combined prevalence of 10 to 54% across much of northern Uganda, with spread to other regions. The 469F mutation reached a prevalence of 38 to 40% in one district in southwestern Uganda in 2021-2022. The 561H mutation, previously described in Rwanda, was first seen in southwestern Uganda in 2021, reaching a prevalence of 23% by 2022. The 441L mutation reached a prevalence of 12 to 23% in three districts in western Uganda in 2022. Genetic analysis indicated local emergence of mutant parasites independent of those in Southeast Asia. The emergence of resistance was observed predominantly in areas where effective malaria control had been discontinued or transmission was unstable. CONCLUSIONS: Data from Uganda showed the emergence of partial resistance to artemisinins in multiple geographic locations, with increasing prevalence and regional spread over time. (Funded by the National Institutes of Health.).


Subject(s)
Artemisinins , Drug Resistance , Malaria , Parasites , Protozoan Proteins , Animals , Humans , Artemisinins/pharmacology , Artemisinins/therapeutic use , Benchmarking , Parasites/drug effects , Parasites/genetics , Uganda/epidemiology , Drug Resistance/genetics , Malaria/drug therapy , Malaria/genetics , Malaria/parasitology , Protozoan Proteins/genetics
10.
J Infect Dis ; 228(7): 926-935, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37221018

ABSTRACT

BACKGROUND: Despite scale-up of seasonal malaria chemoprevention (SMC) with sulfadoxine-pyrimethamine and amodiaquine (SP-AQ) in children 3-59 months of age in Burkina Faso, malaria incidence remains high, raising concerns regarding SMC effectiveness and selection of drug resistance. Using a case-control design, we determined associations between SMC drug levels, drug resistance markers, and presentation with malaria. METHODS: We enrolled 310 children presenting at health facilities in Bobo-Dioulasso. Cases were SMC-eligible children 6-59 months of age diagnosed with malaria. Two controls were enrolled per case: SMC-eligible children without malaria; and older (5-10 years old), SMC-ineligible children with malaria. We measured SP-AQ drug levels among SMC-eligible children and SP-AQ resistance markers among parasitemic children. Conditional logistic regression was used to compute odds ratios (ORs) comparing drug levels between cases and controls. RESULTS: Compared to SMC-eligible controls, children with malaria were less likely to have any detectable SP or AQ (OR, 0.33 [95% confidence interval, .16-.67]; P = .002) and have lower drug levels (P < .05). Prevalences of mutations mediating high-level SP resistance were rare (0%-1%) and similar between cases and SMC-ineligible controls (P > .05). CONCLUSIONS: Incident malaria among SMC-eligible children was likely due to suboptimal levels of SP-AQ, resulting from missed cycles rather than increased antimalarial resistance to SP-AQ.


Subject(s)
Antimalarials , Malaria , Humans , Child , Infant , Child, Preschool , Burkina Faso/epidemiology , Case-Control Studies , Seasons , Malaria/epidemiology , Malaria/prevention & control , Malaria/drug therapy , Antimalarials/therapeutic use , Antimalarials/pharmacology , Sulfadoxine/therapeutic use , Amodiaquine/therapeutic use , Chemoprevention/methods , Drug Combinations , Drug Resistance
11.
Microbiol Spectr ; 11(3): e0523622, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37158739

ABSTRACT

Malaria, especially Plasmodium falciparum infection, remains an enormous problem, and its treatment and control are seriously challenged by drug resistance. New antimalarial drugs are needed. To characterize the Medicines for Malaria Venture pipeline of antimalarials under development, we assessed the ex vivo drug susceptibilities to 19 compounds targeting or potentially impacted by mutations in P. falciparum ABC transporter I family member 1, acetyl-CoA synthetase, cytochrome b, dihydroorotate dehydrogenase, elongation factor 2, lysyl-tRNA synthetase, phenylalanyl-tRNA synthetase, plasmepsin X, prodrug activation and resistance esterase, and V-type H+ ATPase of 998 fresh P. falciparum clinical isolates collected in eastern Uganda from 2015 to 2022. Drug susceptibilities were assessed by 72-h growth inhibition (half-maximum inhibitory concentration [IC50]) assays using SYBR green. Field isolates were highly susceptible to lead antimalarials, with low- to midnanomolar median IC50s, near values previously reported for laboratory strains, for all tested compounds. However, outliers with decreased susceptibilities were identified. Positive correlations between IC50 results were seen for compounds with shared targets. We sequenced genes encoding presumed targets to characterize sequence diversity, search for polymorphisms previously selected with in vitro drug pressure, and determine genotype-phenotype associations. We identified many polymorphisms in target genes, generally in <10% of isolates, but none were those previously selected in vitro with drug pressure, and none were associated with significantly decreased ex vivo drug susceptibility. Overall, Ugandan P. falciparum isolates were highly susceptible to 19 compounds under development as next-generation antimalarials, consistent with a lack of preexisting or novel resistance-conferring mutations in circulating Ugandan parasites. IMPORTANCE Drug resistance necessitates the development of new antimalarial drugs. It is important to assess the activities of compounds under development against parasites now causing disease in Africa, where most malaria cases occur, and to determine if mutations in these parasites may limit the efficacies of new agents. We found that African isolates were generally highly susceptible to the 19 studied lead antimalarials. Sequencing of the presumed drug targets identified multiple mutations in these genes, but these mutations were generally not associated with decreased antimalarial activity. These results offer confidence that the activities of the tested antimalarial compounds now under development will not be limited by preexisting resistance-mediating mutations in African malaria parasites.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Humans , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium falciparum/genetics , Uganda , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Malaria/parasitology , Drug Resistance/genetics , Ligases , Protozoan Proteins/genetics
12.
Am J Trop Med Hyg ; 107(4_Suppl): 21-32, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36228916

ABSTRACT

The Program for Resistance, Immunology, Surveillance, and Modeling of Malaria (PRISM) has been conducting malaria research in Uganda since 2010 to improve the understanding of the disease and measure the impact of population-level control interventions in the country. Here, we will summarize key research findings from a series of studies addressing routine health facility-based surveillance, comprehensive cohort studies, studies of the molecular epidemiology, and transmission of malaria, evaluation of antimalarial drug efficacy, and resistance across the country, and assessments of insecticide resistance. Among our key findings are the following. First, we found that in historically high transmission areas of Uganda, a combination of universal distribution of long-lasting insecticidal-treated nets (LLINs) and sustained indoor residual spraying (IRS) of insecticides lowered the malaria burden greatly, but marked resurgences occurred if IRS was discontinued. Second, submicroscopic infections are common and key drivers of malaria transmission, especially in school-age children (5-15 years). Third, markers of drug resistance have changed over time, with new concerning emergence of markers predicting resistance to artemisinin antimalarials. Fourth, insecticide resistance monitoring has demonstrated high levels of resistance to pyrethroids, appreciable impact of the synergist piperonyl butoxide to pyrethroid susceptibility, emerging resistance to carbamates, and complete susceptibility of malaria vectors to organophosphates, which could have important implications for vector control interventions. Overall, PRISM has yielded a wealth of information informing researchers and policy-makers on the malaria burden and opportunities for improved malaria control and eventual elimination in Uganda. Continued studies concerning all the types of surveillance discussed above are ongoing.


Subject(s)
Antimalarials , Artemisinins , Insecticide-Treated Bednets , Insecticides , Malaria , Pyrethrins , Adolescent , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Carbamates/pharmacology , Child , Child, Preschool , Humans , Insecticide Resistance , Insecticides/pharmacology , Insecticides/therapeutic use , Malaria/drug therapy , Malaria/epidemiology , Malaria/prevention & control , Mosquito Control , Mosquito Vectors , Organophosphates/pharmacology , Piperonyl Butoxide/pharmacology , Pyrethrins/pharmacology , Uganda/epidemiology
13.
Nat Commun ; 13(1): 6353, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289202

ABSTRACT

Artemisinin partial resistance may facilitate selection of Plasmodium falciparum resistant to combination therapy partner drugs. We evaluated 99 P. falciparum isolates collected in 2021 from northern Uganda, where resistance-associated PfK13 C469Y and A675V mutations have emerged, and eastern Uganda, where these mutations are uncommon. With the ex vivo ring survival assay, isolates with the 469Y mutation (median survival 7.3% for mutant, 2.5% mixed, and 1.4% wild type) and/or mutations in Pfcoronin or falcipain-2a, had significantly greater survival; all isolates with survival >5% had mutations in at least one of these proteins. With ex vivo growth inhibition assays, susceptibility to lumefantrine (median IC50 14.6 vs. 6.9 nM, p < 0.0001) and dihydroartemisinin (2.3 vs. 1.5 nM, p = 0.003) was decreased in northern vs. eastern Uganda; 14/49 northern vs. 0/38 eastern isolates had lumefantrine IC50 > 20 nM (p = 0.0002). Targeted sequencing of 819 isolates from 2015-21 identified multiple polymorphisms associated with altered drug susceptibility, notably PfK13 469Y with decreased susceptibility to lumefantrine (p = 6 × 10-8) and PfCRT mutations with chloroquine resistance (p = 1 × 10-20). Our results raise concern regarding activity of artemether-lumefantrine, the first-line antimalarial in Uganda.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Humans , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Antimalarials/pharmacology , Antimalarials/therapeutic use , Lumefantrine/pharmacology , Lumefantrine/therapeutic use , Artemether, Lumefantrine Drug Combination/pharmacology , Artemether, Lumefantrine Drug Combination/therapeutic use , Uganda , Malaria, Falciparum/drug therapy , Drug Resistance/genetics , Artemether/pharmacology , Artemether/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Chloroquine/pharmacology , Drug Combinations , Protozoan Proteins/metabolism
14.
Antimicrob Agents Chemother ; 66(10): e0081722, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36094216

ABSTRACT

The proteasome is a promising target for antimalarial chemotherapy. We assessed ex vivo susceptibilities of fresh Plasmodium falciparum isolates from eastern Uganda to seven proteasome inhibitors: two asparagine ethylenediamines, two macrocyclic peptides, and three peptide boronates; five had median IC50 values <100 nM. TDI8304, a macrocylic peptide lead compound with drug-like properties, had a median IC50 of 16 nM. Sequencing genes encoding the ß2 and ß5 catalytic proteasome subunits, the predicted targets of the inhibitors, and five additional proteasome subunits, identified two mutations in ß2 (I204T, S214F), three mutations in ß5 (V2I, A142S, D150E), and three mutations in other subunits. The ß2 S214F mutation was associated with decreased susceptibility to two peptide boronates, with IC50s of 181 nM and 2635 nM against mutant versus 62 nM and 477 nM against wild type parasites for MMV1579506 and MMV1794229, respectively, although significance could not be formally assessed due to the small number of mutant parasites with available data. The other ß2 and ß5 mutations and mutations in other subunits were not associated with susceptibility to tested compounds. Against culture-adapted Ugandan isolates, two asparagine ethylenediamines and the peptide proteasome inhibitors WLW-vinyl sulfone and WLL-vinyl sulfone (which were not studied ex vivo) demonstrated low nM activity, without decreased activity against ß2 S214F mutant parasites. Overall, proteasome inhibitors had potent activity against P. falciparum isolates circulating in Uganda, and genetic variation in proteasome targets was uncommon.


Subject(s)
Antimalarials , Plasmodium falciparum , Proteasome Inhibitors , Humans , Antimalarials/pharmacology , Antimalarials/chemistry , Asparagine , Drug Resistance/genetics , Ethylenediamines/pharmacology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Peptides/pharmacology , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Proteasome Endopeptidase Complex/genetics , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/pharmacology , Uganda
15.
J Infect Dis ; 226(4): 708-713, 2022 09 04.
Article in English | MEDLINE | ID: mdl-35578987

ABSTRACT

Achieving malaria elimination requires a better understanding of the transmissibility of human infections in different transmission settings. This study aimed to characterize the human infectious reservoir in a high endemicity setting in eastern Uganda, using gametocyte quantification and mosquito feeding assays. In asymptomatic infections, gametocyte densities were positively associated with the proportion of infected mosquitoes (ß = 1.60; 95% CI, 1.32-1.92; P < .0001). Combining transmissibility and abundance in the population, symptomatic and asymptomatic infections were estimated to contribute to 5.3% and 94.7% of the infectious reservoir, respectively. School-aged children (5-15 years old) contributed to 50.4% of transmission events and were important drivers of malaria transmission.


Subject(s)
Anopheles , Burkitt Lymphoma , Malaria, Falciparum , Malaria , Adolescent , Animals , Asymptomatic Infections/epidemiology , Child , Child, Preschool , Humans , Malaria/epidemiology , Malaria, Falciparum/epidemiology , Plasmodium falciparum , Uganda/epidemiology
16.
Antimicrob Agents Chemother ; 66(4): e0143721, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35266828

ABSTRACT

We measured susceptibilities of Ugandan Plasmodium falciparum isolates assayed on the day of collection or after storage at 4°C. Samples were incubated with serial dilutions of 8 antimalarials, and susceptibilities were determined from 72-h growth inhibition assays. Storage was associated with decreased growth and lower 50% inhibitory concentration values, but differences between assays beginning on day 0 or after 1 or 2 days of storage were modest, indicating that short-term storage before drug susceptibility determination is feasible.


Subject(s)
Antimalarials , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Resistance , Humans , Inhibitory Concentration 50 , Malaria, Falciparum/drug therapy , Plasmodium falciparum , Uganda
17.
PLOS Glob Public Health ; 2(3): e0000063, 2022.
Article in English | MEDLINE | ID: mdl-36962263

ABSTRACT

House construction is rapidly modernizing across Africa but the potential benefits for human health are poorly understood. We hypothesised that improvements to housing would be associated with reductions in malaria, acute respiratory infection (ARI) and gastrointestinal illness in an area of low malaria endemicity in Uganda. Data were analysed from a cohort study of male and female child and adult residents (n = 531) of 80 randomly-selected households in Nagongera sub-county, followed for 24 months (October 4, 2017 to October 31, 2019). Houses were classified as modern (brick walls, metal roof and closed eaves) or traditional (all other homes). Light trap collections of mosquitoes were done every two weeks in all sleeping rooms. Every four weeks, we measured malaria infection (using microscopy and qPCR to detect malaria parasites), incidence of malaria, ARI and gastrointestinal illness. We collected 15,780 adult female Anopheles over 7,631 nights. We collected 13,277 blood samples of which 10.2% (1,347) were positive for malaria parasites. Over 958 person years we diagnosed 38 episodes of uncomplicated malaria (incidence 0.04 episodes per person-year at risk), 2,553 episodes of ARI (incidence 2.7 episodes per person-year) and 387 episodes of gastrointestinal illness (incidence 0.4 episodes per person-year). Modern houses were associated with a 53% lower human biting rate compared to traditional houses (adjusted incidence rate ratio [aIRR] 0.47, 95% confidence interval [CI] 0.32-0.67, p<0.001) and a 24% lower incidence of gastrointestinal illness (aIRR 0.76, 95% CI 0.59-0.98, p = 0.04) but no changes in malaria prevalence, malaria incidence nor ARI incidence. House improvements may reduce mosquito-biting rates and gastrointestinal illness among children and adults. For the health sector to leverage Africa's housing modernization, research is urgently needed to identify the healthiest house designs and to assess their effectiveness across a range of epidemiological settings in sub-Saharan Africa.

18.
J Infect Dis ; 225(4): 696-704, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34460932

ABSTRACT

BACKGROUND: The Plasmodium falciparum dihydrofolate reductase (PfDHFR) inhibitors pyrimethamine and cycloguanil (the active metabolite of proguanil) have important roles in malaria chemoprevention, but drug resistance challenges their efficacies. A new compound, P218, was designed to overcome resistance, but drug-susceptibility data for P falciparum field isolates are limited. METHODS: We studied ex vivo PfDHFR inhibitor susceptibilities of 559 isolates from Tororo and Busia districts, Uganda, from 2016 to 2020, sequenced 383 isolates, and assessed associations between genotypes and drug-susceptibility phenotypes. RESULTS: Median half-maximal inhibitory concentrations (IC50s) were 42 100 nM for pyrimethamine, 1200 nM for cycloguanil, 13000 nM for proguanil, and 0.6 nM for P218. Among sequenced isolates, 3 PfDHFR mutations, 51I (100%), 59R (93.7%), and 108N (100%), were very common, as previously seen in Uganda, and another mutation, 164L (12.8%), had moderate prevalence. Increasing numbers of mutations were associated with decreasing susceptibility to pyrimethamine, cycloguanil, and P218, but not proguanil, which does not act directly against PfDHFR. Differences in P218 susceptibilities were modest, with median IC50s of 1.4 nM for parasites with mixed genotype at position 164 and 5.7 nM for pure quadruple mutant (51I/59R/108N/164L) parasites. CONCLUSIONS: Resistance-mediating PfDHFR mutations were common in Ugandan isolates, but P218 retained excellent activity against mutant parasites.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Resistance/genetics , Folic Acid Antagonists/pharmacology , Humans , Malaria, Falciparum/parasitology , Plasmodium falciparum , Polymorphism, Genetic , Proguanil/pharmacology , Pyrimethamine/pharmacology , Pyrimethamine/therapeutic use , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Uganda
19.
Lancet Microbe ; 2(9): e441-e449, 2021 09.
Article in English | MEDLINE | ID: mdl-34553183

ABSTRACT

BACKGROUND: Treatment and control of malaria depends on artemisinin-based combination therapies (ACTs) and is challenged by drug resistance, but thus far resistance to artemisinins and partner drugs has primarily occurred in southeast Asia. The aim of this study was to characterise antimalarial drug susceptibility of Plasmodium falciparum isolates from Tororo and Busia districts in Uganda. METHODS: In this prospective longitudinal study, P falciparum isolates were collected from patients aged 6 months or older presenting at the Tororo District Hospital (Tororo district, a site with relatively low malaria incidence) or Masafu General Hospital (Busia district, a high-incidence site) in eastern Uganda with clinical symptoms of malaria, a positive Giemsa-stained blood film for P falciparum, and no signs of severe disease. Ex-vivo susceptibilities to ten antimalarial drugs were measured using a 72-h microplate growth inhibition assay with SYBR Green detection. Relevant P falciparum genetic polymorphisms were characterised by molecular methods. We compared results with those from earlier studies in this region and searched for associations between drug susceptibility and parasite genotypes. FINDINGS: From June 10, 2016, to July 29, 2019, 361 P falciparum isolates were collected in the Busia district and 79 in the Tororo district from 440 participants. Of 440 total isolates, 392 (89%) successfully grew in culture and showed excellent drug susceptibility for chloroquine (median half-maximal inhibitory concentration [IC50] 20·0 nM [IQR 12·0-26·0]), monodesethylamodiaquine (7·1 nM [4·3-8·9]), pyronaridine (1·1 nM [0·7-2·3]), piperaquine (5·6 nM [3·3-8·6]), ferroquine (1·8 nM [1·5-3·3]), AQ-13 (24·0 nM [17·0-32·0]), lumefantrine (5·1 nM [3·2-7·7]), mefloquine (9·5 nM [6·6-13·0]), dihydroartemisinin (1·5 nM [1·0-2·0]), and atovaquone (0·3 nM [0·2-0·4]). Compared with results from our study in 2010-13, significant improvements in susceptibility were seen for chloroquine (median IC50 288·0 nM [IQR 122·0-607·0]; p<0·0001), monodesethylamodiaquine (76·0 nM [44·0-137]; p<0·0001), and piperaquine (21·0 nM [7·6-43·0]; p<0·0001), a small but significant decrease in susceptibility was seen for lumefantrine (3·0 nM [1·1-7·6]; p<0·0001), and no change in susceptibility was seen with dihydroartemisinin (1·3 nM [0·8-2·5]; p=0·64). Chloroquine resistance (IC50>100 nM) was more common in isolates from the Tororo district (11 [15%] of 71), compared with those from the Busia district (12 [4%] of 320; p=0·0017). We showed significant increases between 2010-12 and 2016-19 in the prevalences of wild-type P falciparum multidrug resistance protein 1 (PfMDR1) Asn86Tyr from 60% (391 of 653) to 99% (418 of 422; p<0·0001), PfMDR1 Asp1246Tyr from 60% (390 of 650) to 90% (371 of 419; p<0·0001), and P falciparum chloroquine resistance transporter (PfCRT) Lys76Thr from 7% (44 of 675) to 87% (364 of 417; p<0·0001). INTERPRETATION: Our results show marked changes in P falciparum drug susceptibility phenotypes and genotypes in Uganda during the past decade. These results suggest that additional changes will be seen over time and continued surveillance of susceptibility to key ACT components is warranted. FUNDING: National Institutes of Health and Medicines for Malaria Venture.


Subject(s)
Antimalarials , Malaria, Falciparum , Antimalarials/pharmacology , Chloroquine/pharmacology , Genotype , Humans , Longitudinal Studies , Lumefantrine/therapeutic use , Malaria, Falciparum/drug therapy , Phenotype , Plasmodium falciparum/genetics , Prospective Studies , Uganda/epidemiology
20.
Antimicrob Agents Chemother ; 65(10): e0077121, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34339273

ABSTRACT

Among novel compounds under recent investigation as potential new antimalarial drugs are three independently developed inhibitors of the Plasmodium falciparum P-type ATPase (PfATP4): KAE609 (cipargamin), PA92, and SJ733. We assessed ex vivo susceptibilities to these compounds of 374 fresh P. falciparum isolates collected in Tororo and Busia districts, Uganda, from 2016 to 2019. Median IC50s were 65 nM for SJ733, 9.1 nM for PA92, and 0.5 nM for KAE609. Sequencing of pfatp4 for 218 of these isolates demonstrated many nonsynonymous single nucleotide polymorphisms; the most frequent mutations were G1128R (69% of isolates mixed or mutant), Q1081K/R (68%), G223S (25%), N1045K (16%), and D1116G/N/Y (16%). The G223S mutation was associated with decreased susceptibility to SJ733, PA92, and KAE609. The D1116G/N/Y mutations were associated with decreased susceptibility to SJ733, and the presence of mutations at both codons 223 and 1116 was associated with decreased susceptibility to PA92 and SJ733. In all of these cases, absolute differences in susceptibilities of wild-type (WT) and mutant parasites were modest. Analysis of clones separated from mixed field isolates consistently identified mutant clones as less susceptible than WT. Analysis of isolates from other sites demonstrated the presence of the G223S and D1116G/N/Y mutations across Uganda. Our results indicate that malaria parasites circulating in Uganda have a number of polymorphisms in PfATP4 and that modestly decreased susceptibility to PfATP4 inhibitors is associated with some mutations now present in Ugandan parasites.


Subject(s)
Antimalarials , Malaria, Falciparum , Adenosine Triphosphatases , Antimalarials/pharmacology , Antimalarials/therapeutic use , Drug Resistance/genetics , Genotype , Humans , Malaria, Falciparum/drug therapy , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Protozoan Proteins/therapeutic use , Uganda
SELECTION OF CITATIONS
SEARCH DETAIL
...