Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Evol Biol ; 11: 295, 2011 Oct 10.
Article in English | MEDLINE | ID: mdl-21985526

ABSTRACT

BACKGROUND: Reconstructing the higher relationships of pulmonate gastropods has been difficult. The use of morphology is problematic due to high homoplasy. Molecular studies have suffered from low taxon sampling. Forty-eight complete mitochondrial genomes are available for gastropods, ten of which are pulmonates. Here are presented the new complete mitochondrial genomes of the ten following species of pulmonates: Salinator rhamphidia (Amphiboloidea); Auriculinella bidentata, Myosotella myosotis, Ovatella vulcani, and Pedipes pedipes (Ellobiidae); Peronia peronii (Onchidiidae); Siphonaria gigas (Siphonariidae); Succinea putris (Stylommatophora); Trimusculus reticulatus (Trimusculidae); and Rhopalocaulis grandidieri (Veronicellidae). Also, 94 new pulmonate-specific primers across the entire mitochondrial genome are provided, which were designed for amplifying entire mitochondrial genomes through short reactions and closing gaps after shotgun sequencing. RESULTS: The structural features of the 10 new mitochondrial genomes are provided. All genomes share similar gene orders. Phylogenetic analyses were performed including the 10 new genomes and 17 genomes from Genbank (outgroups, opisthobranchs, and other pulmonates). Bayesian Inference and Maximum Likelihood analyses, based on the concatenated amino-acid sequences of the 13 protein-coding genes, produced the same topology. The pulmonates are paraphyletic and basal to the opisthobranchs that are monophyletic at the tip of the tree. Siphonaria, traditionally regarded as a basal pulmonate, is nested within opisthobranchs. Pyramidella, traditionally regarded as a basal (non-euthyneuran) heterobranch, is nested within pulmonates. Several hypotheses are rejected, such as the Systellommatophora, Geophila, and Eupulmonata. The Ellobiidae is polyphyletic, but the false limpet Trimusculus reticulatus is closely related to some ellobiids. CONCLUSIONS: Despite recent efforts for increasing the taxon sampling in euthyneuran (opisthobranchs and pulmonates) molecular phylogenies, several of the deeper nodes are still uncertain, because of low support values as well as some incongruence between analyses based on complete mitochondrial genomes and those based on individual genes (18S, 28S, 16S, CO1). Additional complete genomes are needed for pulmonates (especially for Williamia, Otina, and Smeagol), as well as basal heterobranchs closely related to euthyneurans. Increasing the number of markers for gastropod (and more broadly mollusk) phylogenetics also is necessary in order to resolve some of the deeper nodes -although clearly not an easy task. Step by step, however, new relationships are being unveiled, such as the close relationships between the false limpet Trimusculus and ellobiids, the nesting of pyramidelloids within pulmonates, and the close relationships of Siphonaria to sacoglossan opisthobranchs. The additional genomes presented here show that some species share an identical mitochondrial gene order due to convergence.


Subject(s)
Gastropoda/genetics , Genome, Mitochondrial/genetics , Phylogeny , Amino Acid Sequence , Animals , Base Sequence , Bayes Theorem , DNA Primers/genetics , Likelihood Functions , Models, Genetic , Molecular Sequence Annotation , Molecular Sequence Data , Sequence Analysis, DNA , Species Specificity
2.
Mol Phylogenet Evol ; 59(2): 425-37, 2011 May.
Article in English | MEDLINE | ID: mdl-21352933

ABSTRACT

Phylogenetic relationships among higher clades of pulmonate gastropods are reconstructed based on a data set including one nuclear marker (complete ribosomal 18S) and two mitochondrial markers (partial ribosomal 16S and Cytochrome oxidase I) for a total of 96 species. Sequences for 66 of these species are new to science, with a special emphasis on sampling the Ellobiidae, Onchidiidae, and Veronicellidae. Important results include the monophyly of Systellommatophora (Onchidiidae and Veronicellidae) as well as the monophyly of Ellobiidae (including Trimusculus, Otina, and Smeagol). Relationships within Ellobiidae, Onchidiidae, and Veronicellidae are evaluated here for the first time using molecular data. Present results are compared with those from the recent literature, and the current knowledge of phylogenetic relationships among pulmonate gastropods is reviewed: despite many efforts, deep nodes are still uncertain. Identification uncertainties about early fossils of pulmonates are reviewed. Impacts of those phylogenetic and fossil record uncertainties on our understanding of the macro-evolutionary history of pulmonates, especially transitions between aquatic and terrestrial habitats, are discussed.


Subject(s)
Biological Evolution , Gastropoda/genetics , Phylogeny , Amino Acid Sequence , Animals , Base Sequence , Bayes Theorem , DNA, Ribosomal/genetics , Electron Transport Complex IV/genetics , Gastropoda/classification , Likelihood Functions , Models, Genetic , Molecular Sequence Data , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...