Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 8798, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38627476

ABSTRACT

Despite increasing efforts across various disciplines, the fate, transport, and impact of synthetic plastics on the environment and public health remain poorly understood. To better elucidate the microbial ecology of plastic waste and its potential for biotransformation, we conducted a large-scale analysis of all publicly available meta-omic studies investigating plastics (n = 27) in the environment. Notably, we observed low prevalence of known plastic degraders throughout most environments, except for substantial enrichment in riverine systems. This indicates rivers may be a highly promising environment for discovery of novel plastic bioremediation products. Ocean samples associated with degrading plastics showed clear differentiation from non-degrading polymers, showing enrichment of novel putative biodegrading taxa in the degraded samples. Regarding plastisphere pathogenicity, we observed significant enrichment of antimicrobial resistance genes on plastics but not of virulence factors. Additionally, we report a co-occurrence network analysis of 10 + million proteins associated with the plastisphere. This analysis revealed a localized sub-region enriched with known and putative plastizymes-these may be useful for deeper investigation of nature's ability to biodegrade man-made plastics. Finally, the combined data from our meta-analysis was used to construct a publicly available database, the Plastics Meta-omic Database (PMDB)-accessible at plasticmdb.org. These data should aid in the integrated exploration of the microbial plastisphere and facilitate research efforts investigating the fate and bioremediation potential of environmental plastic waste.


Subject(s)
Multiomics , Plastics , Humans , Polymers , Biotransformation , Biodegradation, Environmental
2.
Nat Commun ; 15(1): 544, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38228587

ABSTRACT

What a strain is and how many strains make up a natural bacterial population remain elusive concepts despite their apparent importance for assessing the role of intra-population diversity in disease emergence or response to environmental perturbations. To advance these concepts, we sequenced 138 randomly selected Salinibacter ruber isolates from two solar salterns and assessed these genomes against companion short-read metagenomes from the same samples. The distribution of genome-aggregate average nucleotide identity (ANI) values among these isolates revealed a bimodal distribution, with four-fold lower occurrence of values between 99.2% and 99.8% relative to ANI >99.8% or <99.2%, revealing a natural "gap" in the sequence space within species. Accordingly, we used this ANI gap to define genomovars and a higher ANI value of >99.99% and shared gene-content >99.0% to define strains. Using these thresholds and extrapolating from how many metagenomic reads each genomovar uniquely recruited, we estimated that -although our 138 isolates represented about 80% of the Sal. ruber population- the total population in one saltern pond is composed of 5,500 to 11,000 genomovars, the great majority of which appear to be rare in-situ. These data also revealed that the most frequently recovered isolate in lab media was often not the most abundant genomovar in-situ, suggesting that cultivation biases are significant, even in cases that cultivation procedures are thought to be robust. The methodology and ANI thresholds outlined here should represent a useful guide for future microdiversity surveys of additional microbial species.


Subject(s)
Bacteria , Bacteroidetes , Bacteria/genetics , Bacteroidetes/genetics , Metagenomics/methods , Metagenome/genetics , Phylogeny , Genome, Bacterial/genetics
3.
mBio ; 15(1): e0269623, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38085031

ABSTRACT

IMPORTANCE: Bacterial strains and clonal complexes are two cornerstone concepts for microbiology that remain loosely defined, which confuses communication and research. Here we identify a natural gap in genome sequence comparisons among isolate genomes of all well-sequenced species that has gone unnoticed so far and could be used to more accurately and precisely define these and related concepts compared to current methods. These findings advance the molecular toolbox for accurately delineating and following the important units of diversity within prokaryotic species and thus should greatly facilitate future epidemiological and micro-diversity studies across clinical and environmental settings.


Subject(s)
Bacteria , Genome, Bacterial , Bacteria/genetics , Prokaryotic Cells , Phylogeny , Sequence Analysis, DNA
4.
Sci Transl Med ; 15(720): eabo2750, 2023 11.
Article in English | MEDLINE | ID: mdl-37910603

ABSTRACT

Multidrug-resistant organism (MDRO) colonization is a fundamental challenge in antimicrobial resistance. Limited studies have shown that fecal microbiota transplantation (FMT) can reduce MDRO colonization, but its mechanisms are poorly understood. We conducted a randomized, controlled trial of FMT for MDRO decolonization in renal transplant recipients called PREMIX (NCT02922816). Eleven participants were enrolled and randomized 1:1 to FMT or an observation period followed by delayed FMT if stool cultures were MDRO positive at day 36. Participants who were MDRO positive after one FMT were treated with a second FMT. At last visit, eight of nine patients who completed all treatments were MDRO culture negative. FMT-treated participants had longer time to recurrent MDRO infection versus PREMIX-eligible controls who were not treated with FMT. Key taxa (Akkermansia muciniphila, Alistipes putredinis, Phocaeicola dorei, Phascolarctobacterium faecium, Alistipes species, Mesosutterella massiliensis, Barnesiella intestinihominis, and Faecalibacterium prausnitzii) from the single feces donor used in the study that engrafted in recipients and metabolites such as short-chain fatty acids and bile acids in FMT-responding participants uncovered leads for rational microbiome therapeutic and diagnostic development. Metagenomic analyses revealed a previously unobserved mechanism of MDRO eradication by conspecific strain competition in an FMT-treated subset. Susceptible Enterobacterales strains that replaced baseline extended-spectrum ß-lactamase-producing strains were not detectable in donor microbiota manufactured as FMT doses but in one case were detectable in the recipient before FMT. These data suggest that FMT may provide a path to exploit strain competition to reduce MDRO colonization.


Subject(s)
Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Humans , Fecal Microbiota Transplantation/adverse effects , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Feces/microbiology , Treatment Outcome
5.
Syst Appl Microbiol ; 46(3): 126416, 2023 May.
Article in English | MEDLINE | ID: mdl-36965279

ABSTRACT

Current -omics methods allow the collection of a large amount of information that helps in describing the microbial diversity in nature. Here, and as a result of a culturomic approach that rendered the collection of thousands of isolates from 5 different hypersaline sites (in Spain, USA and New Zealand), we obtained 21 strains that represent two new Salinibacter species. For these species we propose the names Salinibacter pepae sp. nov. and Salinibacter grassmerensis sp. nov. (showing average nucleotide identity (ANI) values < 95.09% and 87.08% with Sal. ruber M31T, respectively). Metabolomics revealed species-specific discriminative profiles. Sal. ruber strains were distinguished by a higher percentage of polyunsaturated fatty acids and specific N-functionalized fatty acids; and Sal. altiplanensis was distinguished by an increased number of glycosylated molecules. Based on sequence characteristics and inferred phenotype of metagenome-assembled genomes (MAGs), we describe two new members of the genus Salinibacter. These species dominated in different sites and always coexisted with Sal. ruber and Sal. pepae. Based on the MAGs from three Argentinian lakes in the Pampa region of Argentina and the MAG of the Romanian lake Fara Fund, we describe the species Salinibacter pampae sp. nov. and Salinibacter abyssi sp. nov. respectively (showing ANI values 90.94% and 91.48% with Sal. ruber M31T, respectively). Sal. grassmerensis sp. nov. name was formed according to the rules of the International Code for Nomenclature of Prokaryotes (ICNP), and Sal. pepae, Sal. pampae sp. nov. and Sal. abyssi sp. nov. are proposed following the rules of the newly published Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode). This work constitutes an example on how classification under ICNP and SeqCode can coexist, and how the official naming a cultivated organism for which the deposit in public repositories is difficult finds an intermediate solution.


Subject(s)
Bacteroidetes , Fatty Acids , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Phylogeny , Fatty Acids/analysis , DNA, Bacterial/genetics , Bacterial Typing Techniques
6.
mSystems ; 7(3): e0128121, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35638728

ABSTRACT

Identification of genes encoding ß-lactamases (BLs) from short-read sequences remains challenging due to the high frequency of shared amino acid functional domains and motifs in proteins encoded by BL genes and related non-BL gene sequences. Divergent BL homologs can be frequently missed during similarity searches, which has important practical consequences for monitoring antibiotic resistance. To address this limitation, we built ROCker models that targeted broad classes (e.g., class A, B, C, and D) and individual families (e.g., TEM) of BLs and challenged them with mock 150-bp- and 250-bp-read data sets of known composition. ROCker identifies most-discriminant bit score thresholds in sliding windows along the sequence of the target protein sequence and hence can account for nondiscriminative domains shared by unrelated proteins. BL ROCker models showed a 0% false-positive rate (FPR), a 0% to 4% false-negative rate (FNR), and an up-to-50-fold-higher F1 score [2 × precision × recall/(precision + recall)] compared to alternative methods, such as similarity searches using BLASTx with various e-value thresholds and BL hidden Markov models, or tools like DeepARG, ShortBRED, and AMRFinder. The ROCker models and the underlying protein sequence reference data sets and phylogenetic trees for read placement are freely available through http://enve-omics.ce.gatech.edu/data/rocker-bla. Application of these BL ROCker models to metagenomics, metatranscriptomics, and high-throughput PCR gene amplicon data should facilitate the reliable detection and quantification of BL variants encoded by environmental or clinical isolates and microbiomes and more accurate assessment of the associated public health risk, compared to the current practice. IMPORTANCE Resistance genes encoding ß-lactamases (BLs) confer resistance to the widely prescribed antibiotic class ß-lactams. Therefore, it is important to assess the prevalence of BL genes in clinical or environmental samples for monitoring the spreading of these genes into pathogens and estimating public health risk. However, detecting BLs in short-read sequence data is technically challenging. Our ROCker model-based bioinformatics approach showcases the reliable detection and typing of BLs in complex data sets and thus contributes toward solving an important problem in antibiotic resistance surveillance. The ROCker models developed substantially expand the toolbox for monitoring antibiotic resistance in clinical or environmental settings.


Subject(s)
Anti-Bacterial Agents , beta-Lactamases , Humans , beta-Lactamases/genetics , Phylogeny , Anti-Bacterial Agents/pharmacology , beta-Lactams , Drug Resistance, Microbial
7.
Water Res ; 210: 117993, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34979467

ABSTRACT

Little is known about the genomic diversity of the microbial communities associated with raw municipal wastewater (sewage), including whether microbial populations specific to sewage exist and how such populations could be used to improve source attribution and apportioning in contaminated waters. Herein, we used the influent of three wastewater treatment plants in Atlanta, Georgia (USA) to perturb laboratory freshwater mesocosms, simulating sewage contamination events, and followed these mesocosms with shotgun metagenomics over a 7-day observational period. We describe 15 abundant non-redundant bacterial metagenome-assembled genomes (MAGs) ubiquitous within all sewage inocula yet absent from the unperturbed freshwater control at our analytical limit of detection. Tracking the dynamics of the populations represented by these MAGs revealed varied decay kinetics, depending on (inferred) phenotypes, e.g., anaerobes decayed faster than aerobes under the well-aerated incubation conditions. Notably, a portion of these populations showed decay patterns similar to those of common markers, Enterococcus and HF183. Despite the apparent decay of these populations, the abundance of ß-lactamase encoding genes remained high throughout incubation relative to the control. Lastly, we constructed genomic libraries representing several different fecal sources and outline a bioinformatic approach which leverages these libraries for identifying and apportioning contamination signal among multiple probable sources using shotgun metagenomic data.


Subject(s)
Metagenome , Metagenomics , Laboratories , Sewage , Water Pollution/analysis
8.
Curr Opin Biotechnol ; 73: 151-157, 2022 02.
Article in English | MEDLINE | ID: mdl-34438234

ABSTRACT

Microbial communities often harbor overwhelming species and gene diversity, making it challenging to determine the important units to study this diversity. We argue that the reduced, and thus tractable, microbial diversity of manmade salterns provides an ideal system to advance this cornerstone issue. We review recent time-series genomic and metagenomic studies of the saltern-dominating bacterial and archaeal taxa to show that these taxa form persistent, sequence-discrete, species-like populations. While these populations harbor extensive intra-population gene diversity, even within a single saltern site, only a small minority of these genes appear to be functionally important during environmental perturbations. We outline an approach to detect and track such populations and their ecologically important genes that should be broadly applicable.


Subject(s)
Ecosystem , Microbiota , Archaea/genetics , Bacteria/genetics , Metagenomics , Microbiota/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics
9.
ISME J ; 16(5): 1222-1234, 2022 05.
Article in English | MEDLINE | ID: mdl-34887548

ABSTRACT

Metagenomic surveys have revealed that natural microbial communities are predominantly composed of sequence-discrete, species-like populations but the genetic and/or ecological processes that maintain such populations remain speculative, limiting our understanding of population speciation and adaptation to perturbations. To address this knowledge gap, we sequenced 112 Salinibacter ruber isolates and 12 companion metagenomes from four adjacent saltern ponds in Mallorca, Spain that were experimentally manipulated to dramatically alter salinity and light intensity, the two major drivers of this ecosystem. Our analyses showed that the pangenome of the local Sal. ruber population is open and similar in size (~15,000 genes) to that of randomly sampled Escherichia coli genomes. While most of the accessory (noncore) genes were isolate-specific and showed low in situ abundances based on the metagenomes compared to the core genes, indicating that they were functionally unimportant and/or transient, 3.5% of them became abundant when salinity (but not light) conditions changed and encoded for functions related to osmoregulation. Nonetheless, the ecological advantage of these genes, while significant, was apparently not strong enough to purge diversity within the population. Collectively, our results provide an explanation for how this immense intrapopulation gene diversity is maintained, which has implications for the prokaryotic species concept.


Subject(s)
Genome, Bacterial , Microbiota , Bacteria/genetics , Metagenome , Metagenomics
10.
Sci Adv ; 7(27)2021 06.
Article in English | MEDLINE | ID: mdl-34193417

ABSTRACT

Nonrecombining sex chromosomes, like the mammalian Y, often lose genes and accumulate transposable elements, a process termed degeneration. The correlation between suppressed recombination and degeneration is clear in animal XY systems, but the absence of recombination is confounded with other asymmetries between the X and Y. In contrast, UV sex chromosomes, like those found in bryophytes, experience symmetrical population genetic conditions. Here, we generate nearly gapless female and male chromosome-scale reference genomes of the moss Ceratodon purpureus to test for degeneration in the bryophyte UV sex chromosomes. We show that the moss sex chromosomes evolved over 300 million years ago and expanded via two chromosomal fusions. Although the sex chromosomes exhibit weaker purifying selection than autosomes, we find that suppressed recombination alone is insufficient to drive degeneration. Instead, the U and V sex chromosomes harbor thousands of broadly expressed genes, including numerous key regulators of sexual development across land plants.


Subject(s)
DNA Transposable Elements , Sex Chromosomes , Animals , DNA Transposable Elements/genetics , Evolution, Molecular , Female , Male , Mammals/genetics , Sex Chromosomes/genetics , Sexual Development
12.
BMC Bioinformatics ; 22(1): 11, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407081

ABSTRACT

BACKGROUND: High-throughput sequencing has increased the number of available microbial genomes recovered from isolates, single cells, and metagenomes. Accordingly, fast and comprehensive functional gene annotation pipelines are needed to analyze and compare these genomes. Although several approaches exist for genome annotation, these are typically not designed for easy incorporation into analysis pipelines, do not combine results from different annotation databases or offer easy-to-use summaries of metabolic reconstructions, and typically require large amounts of computing power for high-throughput analysis not available to the average user. RESULTS: Here, we introduce MicrobeAnnotator, a fully automated, easy-to-use pipeline for the comprehensive functional annotation of microbial genomes that combines results from several reference protein databases and returns the matching annotations together with key metadata such as the interlinked identifiers of matching reference proteins from multiple databases [KEGG Orthology (KO), Enzyme Commission (E.C.), Gene Ontology (GO), Pfam, and InterPro]. Further, the functional annotations are summarized into Kyoto Encyclopedia of Genes and Genomes (KEGG) modules as part of a graphical output (heatmap) that allows the user to quickly detect differences among (multiple) query genomes and cluster the genomes based on their metabolic similarity. MicrobeAnnotator is implemented in Python 3 and is freely available under an open-source Artistic License 2.0 from https://github.com/cruizperez/MicrobeAnnotator . CONCLUSIONS: We demonstrated the capabilities of MicrobeAnnotator by annotating 100 Escherichia coli and 78 environmental Candidate Phyla Radiation (CPR) bacterial genomes and comparing the results to those of other popular tools. We showed that the use of multiple annotation databases allows MicrobeAnnotator to recover more annotations per genome compared to faster tools that use reduced databases and is computationally efficient for use in personal computers. The output of MicrobeAnnotator can be easily incorporated into other analysis pipelines while the results of other annotation tools can be seemingly incorporated into MicrobeAnnotator to generate summary plots.


Subject(s)
Genome, Microbial/genetics , Genomics/methods , Molecular Sequence Annotation/methods , Software , Escherichia coli/genetics
13.
Front Bioinform ; 1: 826701, 2021.
Article in English | MEDLINE | ID: mdl-36303791

ABSTRACT

Mapping of short metagenomic (or metatranscriptomic) read data to reference isolate or single-cell genomes or metagenome-assembled genomes (MAGs) to assess microbial population relative abundance and/or structure represents an essential task of many studies across environmental and clinical settings. The filtering for the quality of the read match and assessment of read mapping results are frequently performed without visual aids or with the assistance of visualizations produced through ad-hoc, in-house approaches. Here, we introduce RecruitPlotEasy, a fully automated, user-friendly pipeline for these purposes that integrates statistical approaches to quantify intra-population sequence and gene-content diversity and identify co-occurring relative populations in the sample. Hence, RecruitPlotEasy should also greatly facilitate population genetics studies. RecruitPlotEasy is implemented in Python and R languages and is freely available open source software under the Artistic License 2.0 from https://github.com/KGerhardt/RecruitPlotEasy.

14.
ISME J ; 15(4): 1178-1191, 2021 04.
Article in English | MEDLINE | ID: mdl-33342997

ABSTRACT

Microbial communities thriving in hypersaline brines of solar salterns are highly resistant and resilient to environmental changes, and salinity is a major factor that deterministically influences community structure. Here, we demonstrate that this resilience occurs even after rapid osmotic shocks caused by a threefold change in salinity (a reduction from 34 to 12% salts) leading to massive amounts of archaeal cell lysis. Specifically, our temporal metagenomic datasets identified two co-occurring ecotypes within the most dominant archaeal population of the brines Haloquadratum walsbyi that exhibited different salt concentration preferences. The dominant ecotype was generally more abundant and occurred in high-salt conditions (34%); the low abundance ecotype always co-occurred but was enriched at salinities around 20% or lower and carried unique gene content related to solute transport and gene regulation. Despite their apparent distinct ecological preferences, the ecotypes did not outcompete each other presumably due to weak functional differentiation between them. Further, the osmotic shock selected for a temporal increase in taxonomic and functional diversity at both the Hqr. walsbyi population and whole-community levels supporting the specialization-disturbance hypothesis, that is, the expectation that disturbance favors generalists. Altogether, our results provide new insights into how intraspecies diversity is maintained in light of substantial gene-content differences and major environmental perturbations.


Subject(s)
Ecotype , Microbiota , Adaptation, Physiological , Metagenome , Salinity
SELECTION OF CITATIONS
SEARCH DETAIL
...