Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Photodiagnosis Photodyn Ther ; 42: 103498, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36882144

ABSTRACT

BACKGROUND: Onychomycosis (OM) is a common nail plate disorder caused by dermatophyte molds, yeasts, and non-dermatophyte molds, which use keratin in the nail plate as an energy source. OM is characterized by dyschromia, increased nail thickness, subungual hyperkeratosis, and onychodystrophy, and is typically treated with conventional antifungals despite frequent reports of toxicity, fungal resistance, and OM recurrence. Photodynamic therapy (PDT) with hypericin (Hyp) as a photosensitizer (PS) stands out as a promising therapeutic modality. When excited by a specific wavelength of light and in the presence of oxygen, to lead to photochemical and photobiological reactions on the selected targets. METHODS: OM diagnosis was made in three suspected cases, and the causative agents were identified by classical and molecular methods, and confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). Susceptibility of planktonic cells of the clinical isolates to conventional antifungals and PDT-Hyp was evaluated, and photoacoustic spectroscopy (PAS) of Hyp permeation in nail fragments ex vivo was analyzed. Furthermore, the patients opted to undergo PDT-Hyp treatment and were subsequently followed up. The protocol was approved by the human ethics committee (CAAE, number 14107419.4.0000.0104). RESULTS: The etiological agents of OM in patients ID 01 and ID 02 belonged to the Fusarium solani species complex, being identified as Fusarium keratoplasticum (CMRP 5514) and Fusarium solani (CMRP 5515), respectively. For patient ID 03, the OM agent was identified as Trichophyton rubrum (CMRP 5516). PDT-Hyp demonstrated a fungicidal effect in vitro, with reductions of p3 log10 (p < 0.0051 and p < 0.0001), and the PAS analyses indicated that Hyp could completely permeate through both healthy and OM-affected nails. After four sessions of PDT-Hyp, mycological cure was observed in all three cases, and after seven months, clinical cure was confirmed. CONCLUSION: PDT-Hyp showed satisfactory results in terms of efficacy and safety, and thus can be considered a promising therapy for the clinical treatment of OM.


Subject(s)
Nail Diseases , Onychomycosis , Photochemotherapy , Humans , Onychomycosis/drug therapy , Onychomycosis/microbiology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Photosensitizing Agents/therapeutic use , Photochemotherapy/methods , Nail Diseases/drug therapy
2.
Front Cell Infect Microbiol ; 11: 684525, 2021.
Article in English | MEDLINE | ID: mdl-34249777

ABSTRACT

Invasive aspergillosis is one of the major causes of morbidity and mortality among invasive fungal infections. The search for new antifungal drugs becomes imperative when existing drugs are not able to efficiently treat these infections. Ebselen, is an organoselenium compound, already successfully approved in clinical trials as a repositioned drug for the treatment of bipolar disorder and prevention of noise-induced hearing loss. In this study, we aimed to reposition ebselen for the treatment of invasive aspergillosis by showing ebselen effectiveness in a murine model. For this, BALB/c mice were immunosuppressed and infected systemically with Aspergillus fumigatus. Animals were divided and treated with ebselen, voriconazole, or drug-free control, for four days. The kidneys were used for CFU count and, histopathological and cytokine analysis. Ebselen was able to significantly reduce the fungal burden in the kidneys of infected mice with efficacy comparable with voriconazole treatment as both had reductions to the same extent. The absence of hyphae and intact kidney tissue structure observed in the histopathological sections analyzed from treated groups corroborate with the downregulation of IL-6 and TNF. In summary, this study brings for the first time in vivo evidence of ebselen efficacy against invasive aspergillosis. Despite these promising results, more animal studies are warranted to evaluate the potential role of ebselen as an alternative option for the management of invasive aspergillosis in humans.


Subject(s)
Aspergillosis , Invasive Fungal Infections , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Aspergillosis/drug therapy , Azoles , Disease Models, Animal , Invasive Fungal Infections/drug therapy , Isoindoles , Mice , Mice, Inbred BALB C , Organoselenium Compounds
3.
J Photochem Photobiol B ; 215: 112103, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33383558

ABSTRACT

The antifungal application of photodynamic therapy (PDT) has been widely explored. According to superficial nature of tinea capitis and the facility of application of light sources, the use of nanoencapsulated hypericin in P-123 associated with PDT (P123-Hy-PDT) has been a poweful tool to treat this pathology. Thus, the aim of this study was to evaluate the efficiency of P123-Hy-PDT against planktonic cells and in a murine model of dermatophytosis caused by Microsporum canis. In vitro antifungal susceptibility and in vivo efficiency tests were performed, including a skin toxicity assay, analysis of clinical signs by evaluating score, and photoacoustic spectroscopy. In addition, tissue analyses by histopathology and levels of pro-inflammatory cytokines, such as quantitative and qualitative antifungal assays, were employed. The in vitro assays demonstrated antifungal susceptibility with 6.25 and 12.5 µmol/L P123-Hy-PDI; these experiments are the first that have used this treatment of animals. P123-Hyp-mediated PDT showed neither skin nor biochemical alteration in vivo; it was safe for dermatophytosis treatment. Additionally, the treatment revealed rapid improvement in clinical signs at the site of infection after only three treatment sessions, with a clinical score confirmed by photoacoustic spectroscopy. The mycological reduction occurred after six treatment sessions, with a statistically significant decrease compared with untreated infected animals. These findings showed that P123-Hy-PDT restored tissue damage caused by infection, a phenomenon confirmed by histopathological analysis and proinflammatory cytokine levels. Our results reveal for the first time that P123-Hy-PDT is a promising treatment for tinea capitis and tinea corporis caused by M. canis, because it showed rapid clinical improvement and mycological reduction without causing toxicity.


Subject(s)
Nanostructures/chemistry , Perylene/analogs & derivatives , Photochemotherapy/methods , Poloxamer/analogs & derivatives , Tinea/drug therapy , Animals , Anthracenes , Capsules , Mice , Perylene/chemistry , Perylene/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Poloxamer/chemistry , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL
...