Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 7: 12657, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27582363

ABSTRACT

Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used. By slightly increasing the solvent polarity, these light-harvesting fibres disassemble to spherical structures with silent electronic circular dichroism spectra but which fluoresce. Upon further dilution with the nonpolar solvent, the intense Cotton effects are recovered, thus proving a reversible switching. A single crystal X-ray structure shows a head-to-head arrangement of porphyrins that explains both their excitonic coupling and quenched fluorescence.

2.
Inorg Chem ; 50(13): 6073-82, 2011 Jul 04.
Article in English | MEDLINE | ID: mdl-21648433

ABSTRACT

An efficient noncovalent assembly process involving high geometrical control was applied to a linear bis(imidazolyl zinc porphyrin) 7Zn, bearing C(18) substitutents, to generate linear multiporphyrin wires. The association process is based on imidazole recognition within the cavity of the phenanthroline-strapped zinc porphyrin. In chlorinated solvents, discrete soluble oligomers were obtained after (7Zn)(n) was end-capped with a terminal single imidazolyl zinc porphyrin derivative 4Zn. These soluble species, as well as their destabilization in the presence of protic solvents, were studied by UV-visible and time-resolved luminescence. In the solid state, assemblies as long as 480 nm, which corresponds to 190 iterative units or a total of 380 porphyrins, were observed by atomic force microscopy measurements on mica. The length and linearity of the porphyrin wires obtained illustrate the potential of phenanthroline-strapped porphyrins for the directional control of self-assembly processes.

SELECTION OF CITATIONS
SEARCH DETAIL