Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychiatry ; 9: 365, 2018.
Article in English | MEDLINE | ID: mdl-30150944

ABSTRACT

Connectomics is a framework that models brain structure and function interconnectivity as a network, rather than narrowly focusing on select regions-of-interest. MRI-derived connectomes can be structural, usually based on diffusion-weighted MR imaging, or functional, usually formed by examining fMRI blood-oxygen-level-dependent (BOLD) signal correlations. Recently, we developed a novel method for assessing the hierarchical modularity of functional brain networks-the probability associated community estimation (PACE). PACE uniquely permits a dual formulation, thus yielding equivalent connectome modular structure regardless of whether positive or negative edges are considered. This method was rigorously validated using the 1,000 functional connectomes project data set (F1000, RRID:SCR_005361) (1) and the Human Connectome Project (HCP, RRID:SCR_006942) (2, 3) and we reported novel sex differences in resting-state connectivity not previously reported. (4) This study further examines sex differences in regard to hierarchical modularity as a function of age and clinical correlates, with findings supporting a basal configuration framework as a more nuanced and dynamic way of conceptualizing the resting-state connectome that is modulated by both age and sex. Our results showed that differences in connectivity between men and women in the 22-25 age range were not significantly different. However, these same non-significant differences attained significance in both the 26-30 age group (p = 0.003) and the 31-35 age group (p < 0.001). At the most global level, areas of diverging sex difference include parts of the prefrontal cortex and the temporal lobe, amygdala, hippocampus, inferior parietal lobule, posterior cingulate, and precuneus. Further, we identified statistically different self-reported summary scores of inattention, hyperactivity, and anxiety problems between men and women. These self-reports additionally divergently interact with age and the basal configuration between sexes.

2.
Hum Brain Mapp ; 36(9): 3653-65, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26096223

ABSTRACT

This article presents a novel approach for understanding information exchange efficiency and its decay across hierarchies of modularity, from local to global, of the structural human brain connectome. Magnetic resonance imaging techniques have allowed us to study the human brain connectivity as a graph, which can then be analyzed using a graph-theoretical approach. Collectively termed brain connectomics, these sophisticated mathematical techniques have revealed that the brain connectome, like many networks, is highly modular and brain regions can thus be organized into communities or modules. Here, using tractography-informed structural connectomes from 46 normal healthy human subjects, we constructed the hierarchical modularity of the structural connectome using bifurcating dendrograms. Moving from fine to coarse (i.e., local to global) up the connectome's hierarchy, we computed the rate of decay of a new metric that hierarchically preferentially weighs the information exchange between two nodes in the same module. By computing "embeddedness"-the ratio between nodal efficiency and this decay rate, one could thus probe the relative scale-invariant information exchange efficiency of the human brain. Results suggest that regions that exhibit high embeddedness are those that comprise the limbic system, the default mode network, and the subcortical nuclei. This supports the presence of near-decomposability overall yet relative embeddedness in select areas of the brain. The areas we identified as highly embedded are varied in function but are arguably linked in the evolutionary role they play in memory, emotion and behavior.


Subject(s)
Brain/anatomy & histology , Connectome/methods , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Information Theory , Male , Middle Aged , Neural Pathways/anatomy & histology , Software
3.
Psychiatry Res ; 225(1-2): 208-211, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25433960

ABSTRACT

Energy metabolism and immunity are characterized as abnormal in schizophrenia. Because these two systems are highly coordinated, we measured expression of prototypic obesogenic and immunogenic genes in freshly harvested PBMC from controls and participants with schizophrenia. We report significant increases in PPARγ, SREBP1, IL-6 and TNFα, and decreases in PPARα and C/EPBα and mRNA levels from patients with schizophrenia, with additional BMI interactions, characterizing dysregulation of genes relating to metabolic-inflammation in schizophrenia.


Subject(s)
CCAAT-Enhancer-Binding Proteins/genetics , Energy Metabolism/genetics , Overweight/genetics , PPAR alpha/genetics , PPAR gamma/genetics , Schizophrenia/genetics , Sterol Regulatory Element Binding Protein 1/genetics , Adult , Antipsychotic Agents/adverse effects , Antipsychotic Agents/therapeutic use , Female , Gene Expression/genetics , Humans , Inflammation/genetics , Interleukin-6/genetics , Leukocytes, Mononuclear/metabolism , Male , Middle Aged , Obesity/genetics , Overweight/chemically induced , Overweight/diagnosis , RNA, Messenger/genetics , Schizophrenia/diagnosis , Schizophrenia/drug therapy , Tumor Necrosis Factor-alpha/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...