Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Theory Comput ; 20(11): 4869-4884, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38818701

ABSTRACT

Comparisons between simulated and experimental adsorption isotherms in MOFs are fraught with challenges. On the experimental side, there is significant variation between isotherms measured on the same system, with a significant percentage (∼20%) of published data being considered outliers. On the simulation side, force fields are often chosen "off-the-shelf" with little or no validation. The effect of this choice on the reliability of simulated adsorption predictions has not yet been rigorously quantified. In this work, we fill this gap by systematically quantifying the uncertainty arising from force field selection on adsorption isotherm predictions. We choose methane adsorption, where electrostatic interactions are negligible, to independently study the effect of the framework Lennard-Jones parameters on a series of prototypical materials that represent the most widely studied MOF "families". Using this information, we compute an adsorption "consensus isotherm" from simulations, including a quantification of uncertainty, and compare it against a manually curated set of experimental data from the literature. By considering many experimental isotherms measured by different groups and eliminating outliers in the data using statistical analysis, we conduct a rigorous comparison that avoids the pitfalls of the standard approach of comparing simulation predictions to a single experimental data set. Our results show that (1) the uncertainty in simulated isotherms can be as large as 15% and (2) standard force fields can provide reliable predictions for some systems but can fail dramatically for others, highlighting systematic shortcomings in those models. Based on this, we offer recommendations for future simulation studies of adsorption, including high-throughput computational screening of MOFs.

2.
JACS Au ; 3(11): 3101-3110, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38034967

ABSTRACT

Converting abundant biomass-derived feedstocks into value-added platform chemicals has attracted increasing interest in biorefinery; however, the rigorous operating conditions that are required limit the commercialization of these processes. Nonthermal plasma-based electrification using intermittent renewable energy is an emerging alternative for sustainable next-generation chemical synthesis under mild conditions. Here, we report a hydrogen-free tunable plasma process for the selective conversion of lignin-derived anisole into phenolics with a high selectivity of 86.9% and an anisole conversion of 45.6% at 150 °C. The selectivity to alkylated chemicals can be tuned through control of the plasma alkylation process by changing specific energy input. The combined experimental and computational results reveal that the plasma generated H and CH3 radicals exhibit a "catalytic effect" that reduces the activation energy of the transalkylation reactions, enabling the selective anisole conversion at low temperatures. This work opens the way for the sustainable and selective production of phenolic chemicals from biomass-derived feedstocks under mild conditions.

3.
ACS Catal ; 13(13): 9113-9124, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37441235

ABSTRACT

The stoichiometric water splitting using a solar-driven Z-scheme approach is an emerging field of interest to address the increasing renewable energy demand and environmental concerns. So far, the reported Z-scheme must comprise two populations of photocatalysts. In the present work, only tungsten oxides are used to construct a robust Z-scheme system for complete visible-driven water splitting in both neutral and alkaline solutions, where sodium tungsten oxide bronze (Na0.56WO3-x) is used as a H2 evolution photocatalyst and two-dimensional (2D) tungsten trioxide (WO3) nanosheets as an O2 evolution photocatalyst. This system efficiently produces H2 (14 µmol h-1) and O2 (6.9 µmol h-1) at an ideal molar ratio of 2:1 in an aqueous solution driven by light, resulting in a remarkably high apparent quantum yield of 6.06% at 420 nm under neutral conditions. This exceptional selective H2 and O2 production is due to the preferential adsorption of iodide (I-) on Na0.56WO3-x and iodate (IO3-) on WO3, which is evidenced by both experiments and density functional theory calculation. The present liquid Z-scheme in the presence of efficient shuttle molecules promises a separated H2 and O2 evolution by applying a dual-bed particle suspension system, thus a safe photochemical process.

SELECTION OF CITATIONS
SEARCH DETAIL
...