Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(13): 11168-11181, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38932616

ABSTRACT

ß-Glucocerebrosidase (GBA/GCase) mutations leading to misfolded protein cause Gaucher's disease and are a major genetic risk factor for Parkinson's disease and dementia with Lewy bodies. The identification of small molecule pharmacological chaperones that can stabilize the misfolded protein and increase delivery of degradation-prone mutant GCase to the lysosome is a strategy under active investigation. Here, we describe the first use of fragment-based drug discovery (FBDD) to identify pharmacological chaperones of GCase. The fragment hits were identified by using X-ray crystallography and biophysical techniques. This work led to the discovery of a series of compounds that bind GCase with nM potency and positively modulate GCase activity in cells.


Subject(s)
Allosteric Site , Drug Discovery , Glucosylceramidase , Glucosylceramidase/metabolism , Glucosylceramidase/antagonists & inhibitors , Glucosylceramidase/chemistry , Humans , Crystallography, X-Ray , Structure-Activity Relationship , Models, Molecular , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/metabolism
2.
Angew Chem Int Ed Engl ; 63(30): e202404666, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38695434

ABSTRACT

The 1,3-difunctionalization of unactivated alkenes is an under-explored transformation that leads to moieties that are otherwise challenging to prepare. Herein, we report a hypervalent iodine-mediated 1,3-difluorination of homoallylic (aryl) ethers to give unreported 1,3-difluoro-4-oxy groups with moderate to excellent diastereoselectivity. The transformation proceeds through a different mode of reactivity for 1,3-difunctionalization, in which a regioselective addition of fluoride opens a transiently formed oxonium intermediate to rearrange an alkyl chain. The optimized protocol is scalable and shown to proceed well with a variety of functional groups and substitution on the alkenyl chain, hence providing ready access to this fluorinated, conformationally controlled moiety.

3.
RSC Med Chem ; 14(12): 2699-2713, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38107176

ABSTRACT

Miniaturised high-throughput experimentation (HTE) is widely employed in industrial and academic laboratories for rapid reaction optimisation using material-limited, multifactorial reaction condition screening. In fragment-based drug discovery (FBDD), common toolbox reactions such as the Suzuki-Miyaura and Buchwald-Hartwig cross couplings can be hampered by the fragment's intrinsic heteroatom-rich pharmacophore which is required for ligand-protein binding. At Astex, we are using microscale HTE to speed up reaction optimisation and prevent target down-prioritisation. By identifying catalyst/base/solvent combinations which tolerate unprotected heteroatoms we can rapidly optimise key cross-couplings and expedite route design by avoiding superfluous protecting group manipulations. However, HTE requires extensive upfront training, and this modern automated synthesis technique largely differs to the way organic chemists are traditionally trained. To make HTE accessible to all our synthetic chemists we have developed a semi-automated workflow enabled by pre-made 96-well screening kits, rapid analytical methods and in-house software development, which is empowering chemists at Astex to run HTE screens independently with minimal training.

4.
ACS Med Chem Lett ; 13(10): 1591-1597, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36262388

ABSTRACT

Fragment-based ligand discovery was successfully applied to histone deacetylase HDAC2. In addition to the anticipated hydroxamic acid- and benzamide-based fragment screening hits, a low affinity (∼1 mM) α-amino-amide zinc binding fragment was identified, as well as fragments binding to other regions of the catalytic site. This alternative zinc-binding fragment was further optimized, guided by the structural information from protein-ligand complex X-ray structures, into a sub-µM, brain penetrant, HDAC2 inhibitor (17) capable of modulating histone acetylation levels in vivo.

5.
J Med Chem ; 65(18): 12319-12333, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36101934

ABSTRACT

Fragment-based drug discovery (FBDD) has become an established method for the identification of efficient starting points for drug discovery programs. In recent years, electrophilic fragment screening has garnered increased attention from both academia and industry to identify novel covalent hits for tool compound or drug development against challenging drug targets. Herein, we describe the design and characterization of an acrylamide-focused electrophilic fragment library and screening campaign against extracellular signal-regulated kinase 2 (ERK2) using high-throughput protein crystallography as the primary hit-finding technology. Several fragments were found to have covalently modified the adenosine triphosphate (ATP) binding pocket Cys166 residue. From these hits, 22, a covalent ATP-competitive inhibitor with improved potency (ERK2 IC50 = 7.8 µM), was developed.


Subject(s)
Mitogen-Activated Protein Kinase 1 , Protein Kinase Inhibitors , Acrylamides/chemistry , Adenosine Triphosphate/chemistry , Crystallography, X-Ray , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 1/metabolism , Protein Kinase Inhibitors/pharmacology , X-Rays
6.
J Med Chem ; 65(11): 7476-7488, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35512344

ABSTRACT

Optimization of electrostatic complementarity is an important strategy in structure-based drug discovery for improving the affinity of molecules against a specific protein target. In this Miniperspective we identify examples where deliberate optimization of protein-ligand electrostatic complementarity or intramolecular electrostatic interactions gave improvements in target affinity (up to 250-fold), physicochemical properties, in vitro properties, and off-target selectivity. We also look retrospectively at a series of factor Xa inhibitors that show an almost 8000-fold range in potency that can be correlated with the calculated electrostatic potential (ESP) surfaces. Recent developments using a graph-convolutional deep neural network to rapidly generate high quality ESP surfaces have the potential to make this useful tool more accessible for a wider audience within the field of medicinal chemistry.


Subject(s)
Drug Design , Proteins , Ligands , Proteins/chemistry , Retrospective Studies , Static Electricity
7.
Essays Biochem ; 61(5): 475-484, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29118094

ABSTRACT

Fragment-based drug discovery (FBDD) is a technique for identifying low molecular weight chemical starting points for drug discovery. Since its inception 20 years ago, FBDD has grown in popularity to the point where it is now an established technique in industry and academia. The approach involves the biophysical screening of proteins against collections of low molecular weight compounds (fragments). Although fragments bind to proteins with relatively low affinity, they form efficient, high quality binding interactions with the protein architecture as they have to overcome a significant entropy barrier to bind. Of the biophysical methods available for fragment screening, X-ray protein crystallography is one of the most sensitive and least prone to false positives. It also provides detailed structural information of the protein-fragment complex at the atomic level. Fragment-based screening using X-ray crystallography is therefore an efficient method for identifying binding hotspots on proteins, which can then be exploited by chemists and biologists for the discovery of new drugs. The use of FBDD is illustrated here with a recently published case study of a drug discovery programme targeting the challenging protein-protein interaction Kelch-like ECH-associated protein 1:nuclear factor erythroid 2-related factor 2.


Subject(s)
Combinatorial Chemistry Techniques , Drug Design , Kelch-Like ECH-Associated Protein 1/antagonists & inhibitors , NF-E2-Related Factor 2/antagonists & inhibitors , Small Molecule Libraries/chemistry , Binding Sites , Crystallography, X-Ray , Drug Discovery/methods , High-Throughput Screening Assays , Humans , Kelch-Like ECH-Associated Protein 1/chemistry , Kelch-Like ECH-Associated Protein 1/metabolism , Ligands , NF-E2-Related Factor 2/chemistry , NF-E2-Related Factor 2/metabolism , Protein Binding , Small Molecule Libraries/chemical synthesis , Structure-Activity Relationship , Thermodynamics
8.
Org Lett ; 15(8): 2046-9, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23560679

ABSTRACT

An efficient strategy for the total synthesis of (-)-blepharocalyxin D and an analogue is described. The key step involves an acid-mediated cascade process in which reaction of methyl 3,3-dimethoxypropanoate with γ,δ-unsaturated alcohols possessing diastereotopic styrenyl groups gives trans-fused bicyclic lactones with the creation of two rings and four stereocenters in one pot.


Subject(s)
Alcohols/chemistry , Lactones/chemical synthesis , Pyrans/chemical synthesis , Alpinia/chemistry , Lactones/chemistry , Molecular Structure , Pyrans/chemistry , Stereoisomerism
9.
Angew Chem Int Ed Engl ; 51(16): 3901-4, 2012 Apr 16.
Article in English | MEDLINE | ID: mdl-22392806

ABSTRACT

trans-2,8-Dioxabicyclodecanes were prepared in high yield with the creation of up to three stereocenters in a single pot by the acid-mediated reaction of γ,δ-unsaturated alcohols with aldehydes (see scheme, Bn=benzyl). This versatile reaction enables the stereoselective introduction of substituents at the C3, C4, C7, and C9 positions of the bicyclic framework.

SELECTION OF CITATIONS
SEARCH DETAIL
...