Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Contemp Clin Trials Commun ; 17: 100545, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32181411

ABSTRACT

BACKGROUND: During descending aortic repair, critically decreased blood flow to the myelum can result in ischemic spinal cord injury and transient or permanent paraplegia. Assessment of motor evoked potentials (MEPs) has been shown to be a valuable tool which allows to detect spinal cord ischemia (SCI) intraoperatively within a therapeutic window suitable to prevent progression to paraparesis or paraplegia. MEP monitoring is not feasible during postoperative care in the awakening patient. Therefore, ancillary techniques to monitor integrity of spinal cord function are needed to detect delayed spinal cord ischemia. OBJECTIVE: The purpose of this study is to evaluate whether assessment of long loop reflexes (LLR; F-waves) and paraspinal muscle oximetry using Near-Infrared Spectroscopy (NIRS) are feasible and valid in detecting delayed SCI. METHODS: We aim to include patients from three tertiary referral centers undergoing aortic repair with MEP monitoring in this study.F-wave measurements and paraspinal NIRS oximetry will be operated intra- and postoperatively. Measurement characteristics and feasibility will be assessed in the first 25 patients. Subsequently, a second cohort of 75 patients will be investigated to determine the sensitivity and specificity of F-waves and NIRS in detecting perioperative SCI. In this context for the MEP group SCI is defined intraoperatively as significant MEP changes and postoperatively as newly developed paraplegia. CONCLUSIONS: A clinical study design and protocol is proposed to assess if F-waves and/or NIRS-based paraspinal oximetry are feasible and valid in detecting and monitoring for occurrences of delayed SCI.

2.
PLoS One ; 12(9): e0184212, 2017.
Article in English | MEDLINE | ID: mdl-28877216

ABSTRACT

The Multiple Inert Gas Elimination Technique, based on Micropore Membrane Inlet Mass Spectrometry, (MMIMS-MIGET) has been designed as a rapid and direct method to assess the full range of ventilation-to-perfusion (V/Q) ratios. MMIMS-MIGET distributions have not been assessed in an experimental setup with predefined V/Q-distributions. We aimed (I) to construct a novel in vitro lung model (IVLM) for the simulation of predefined V/Q distributions with five gas exchange compartments and (II) to correlate shunt fractions derived from MMIMS-MIGET with preset reference shunt values of the IVLM. Five hollow-fiber membrane oxygenators switched in parallel within a closed extracorporeal oxygenation circuit were ventilated with sweep gas (V) and perfused with human red cell suspension or saline (Q). Inert gas solution was infused into the perfusion circuit of the gas exchange assembly. Sweep gas flow (V) was kept constant and reference shunt fractions (IVLM-S) were established by bypassing one or more oxygenators with perfusate flow (Q). The derived shunt fractions (MM-S) were determined using MIGET by MMIMS from the retention data. Shunt derived by MMIMS-MIGET correlated well with preset reference shunt fractions. The in vitro lung model is a convenient system for the setup of predefined true shunt fractions in validation of MMIMS-MIGET.


Subject(s)
Lung/physiology , Pulmonary Gas Exchange/physiology , Ventilation-Perfusion Ratio/physiology , Extracorporeal Membrane Oxygenation/methods , Humans , In Vitro Techniques , Mass Spectrometry , Micropore Filters , Models, Biological , Noble Gases/metabolism
3.
PLoS One ; 8(4): e60591, 2013.
Article in English | MEDLINE | ID: mdl-23565259

ABSTRACT

BACKGROUND: Measurement of partial pressure of oxygen (PO2) at high temporal resolution remains a technological challenge. This study introduces a novel PO2 sensing technology based on Multi-Frequency Phase Fluorimetry (MFPF). The aim was to validate MFPF against polarographic Clark-type electrode (CTE) PO2 measurements. METHODOLOGY/PRINCIPAL FINDINGS: MFPF technology was first investigated in N = 8 anaesthetised pigs at FIO2 of 0.21, 0.4, 0.6, 0.8 and 1.0. At each FIO2 level, blood samples were withdrawn and PO2 was measured in vitro with MFPF using two FOXY-AL300 probes immediately followed by CTE measurement. Secondly, MFPF-PO2 readings were compared to CTE in an artificial circulatory setup (human packed red blood cells, haematocrit of 30%). The impacts of temperature (20, 30, 40°C) and blood flow (0.8, 1.6, 2.4, 3.2, 4.0 L min(-1)) on MFPF-PO2 measurements were assessed. MFPF response time in the gas- and blood-phase was determined. Porcine MFPF-PO2 ranged from 63 to 749 mmHg; the corresponding CTE samples from 43 to 712 mmHg. Linear regression: CTE = 15.59+1.18*MFPF (R(2) = 0.93; P<0.0001). Bland Altman analysis: meandiff 69.2 mmHg, rangediff -50.1/215.6 mmHg, 1.96-SD limits -56.3/194.8 mmHg. In artificial circulatory setup, MFPF-PO2 ranged from 20 to 567 mmHg and CTE samples from 11 to 575 mmHg. Linear regression: CTE = -8.73+1.05*MFPF (R(2) = 0.99; P<0.0001). Bland-Altman analysis: meandiff 6.6 mmHg, rangediff -9.7/20.5 mmHg, 1.96-SD limits -12.7/25.8 mmHg. Differences between MFPF and CTE-PO2 due to variations of temperature were less than 6 mmHg (range 0-140 mmHg) and less than 35 mmHg (range 140-750 mmHg); differences due to variations in blood flow were less than 15 mmHg (all P-values>0.05). MFPF response-time (monoexponential) was 1.48±0.26 s for the gas-phase and 1.51±0.20 s for the blood-phase. CONCLUSIONS/SIGNIFICANCE: MFPF-derived PO2 readings were reproducible and showed excellent correlation and good agreement with Clark-type electrode-based PO2 measurements. There was no relevant impact of temperature and blood flow upon MFPF-PO2 measurements. The response time of the MFPF FOXY-AL300 probe was adequate for real-time sensing in the blood phase.


Subject(s)
Fluorometry/methods , Oxygen/physiology , Partial Pressure , Animals , Blood Gas Analysis , Models, Theoretical , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...