Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2430: 315-336, 2022.
Article in English | MEDLINE | ID: mdl-35476342

ABSTRACT

The γ-tubulin ring complex (γTuRC) is the major microtubule nucleator in cells. How γTuRC nucleates microtubules, and how nucleation is regulated is not understood. To gain an understanding of γTuRC activity and regulation at the molecular level, it is important to measure quantitatively how γTuRC interacts with tubulin and potential regulators in space and time. Here, we describe a total internal reflection fluorescence microscopy-based assay on chemically functionalized glass slides for the in vitro study of surface immobilized purified γTuRC. The assay allows to measure microtubule nucleation by γTuRC in real time and at a single molecule level over a wide variety of assay conditions, in the absence and presence of potential regulators. This setup provides a previously unavailable opportunity for quantitative studies of the kinetics of microtubule nucleation by γTuRC.


Subject(s)
Centrosome , Microtubule-Associated Proteins , Microscopy , Microtubule-Associated Proteins/chemistry , Microtubule-Organizing Center , Microtubules/chemistry
2.
Dev Cell ; 53(5): 603-617.e8, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32433913

ABSTRACT

The γ-tubulin ring complex (γTuRC) is the major microtubule nucleator in cells. The mechanism of its regulation is not understood. We purified human γTuRC and measured its nucleation properties in a total internal reflection fluorescence (TIRF) microscopy-based real-time nucleation assay. We find that γTuRC stably caps the minus ends of microtubules that it nucleates stochastically. Nucleation is inefficient compared with microtubule elongation. The 4 Å resolution cryoelectron microscopy (cryo-EM) structure of γTuRC, combined with crosslinking mass spectrometry analysis, reveals an asymmetric conformation with only part of the complex in a "closed" conformation matching the microtubule geometry. Actin in the core of the complex, and MZT2 at the outer perimeter of the closed part of γTuRC appear to stabilize the closed conformation. The opposite side of γTuRC is in an "open," nucleation-incompetent conformation, leading to a structural asymmetry explaining the low nucleation efficiency of purified human γTuRC. Our data suggest possible regulatory mechanisms for microtubule nucleation by γTuRC closure.


Subject(s)
Microtubule-Associated Proteins/metabolism , Microtubules/ultrastructure , Tubulin/chemistry , Actins/chemistry , Actins/metabolism , Cryoelectron Microscopy , HeLa Cells , Humans , Microtubule-Associated Proteins/chemistry , Microtubules/chemistry , Microtubules/metabolism , Molecular Dynamics Simulation , Protein Conformation , Single Molecule Imaging , Tubulin/metabolism
3.
Methods Mol Biol ; 2100: 319-333, 2020.
Article in English | MEDLINE | ID: mdl-31939133

ABSTRACT

pH is a fundamental variable in enzyme catalysis and its measurement therefore is crucial for understanding and optimizing enzyme-catalyzed reactions. Whereas measurements within homogeneous bulk liquid solution are prominently used, enzymes immobilized inside porous particles often suffer from pH gradients due to partition effects and heterogeneously catalyzed biochemical reactions. Unfortunately, the measurements of intraparticle pH are not available due to the lack of useful suitable methodologies; as a consequence the biocatalyst characterization is hampered. Here, a fully biocompatible methodology for real-time optical sensing of pH within porous materials is described. A genetically encoded ratiometric pH indicator, the superfolder yellow fluorescent protein (sYFP), is used to functionalize the internal surface of enzyme carrier supports. By using controlled, tailor-made immobilization, sYFP is homogeneously distributed within these materials, and so enables, via self-referenced imaging analysis, pH measurements in high accuracy and with useful spatiotemporal resolution. The hydrolysis of penicillin by a penicillin acylase, taking place in solution or confined to the solid surface of the porous matrix is used to show the monitoring of evolution of internal pH. Thus, pH sensing based on immobilized sYFP represents a broadly applicable technique to the study of the internally heterogeneous environment of immobilized enzymes into solid particles.


Subject(s)
Biosensing Techniques , Enzymes, Immobilized/chemistry , Hydrogen-Ion Concentration , Catalysis , Enzyme Activation , Hydrolysis , Immobilized Proteins/chemistry , Kinetics , Luminescent Proteins/chemistry , Porosity
4.
Structure ; 27(3): 497-506.e4, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30661854

ABSTRACT

Microtubules are cytoskeletal filaments of eukaryotic cells made of αß-tubulin heterodimers. Structural studies of non-microtubular tubulin rely mainly on molecules that prevent its self-assembly and are used as crystallization chaperones. Here we identified artificial proteins from an αRep library that are specific to α-tubulin. Turbidity experiments indicate that these αReps impede microtubule assembly in a dose-dependent manner and total internal reflection fluorescence microscopy further shows that they specifically block growth at the microtubule (-) end. Structural data indicate that they do so by targeting the α-tubulin longitudinal surface. Interestingly, in one of the complexes studied, the α subunit is in a conformation that is intermediate between the ones most commonly observed in X-ray structures of tubulin and those seen in the microtubule, emphasizing the plasticity of tubulin. These α-tubulin-specific αReps broaden the range of tools available for the mechanistic study of microtubule dynamics and its regulation.


Subject(s)
Recombinant Fusion Proteins/pharmacology , Tubulin/chemistry , Tubulin/metabolism , Animals , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Microtubules/drug effects , Microtubules/metabolism , Models, Molecular , Peptide Library , Protein Conformation , Recombinant Fusion Proteins/chemistry , Repetitive Sequences, Amino Acid
5.
ACS Appl Mater Interfaces ; 10(8): 6858-6868, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29384355

ABSTRACT

The pH is fundamental to biological function and its measurement therefore crucial across all biosciences. Unlike homogenous bulk solution, solids often feature internal pH gradients due to partition effects and confined biochemical reactions. Thus, a full spatiotemporal mapping for pH characterization in solid materials with biological systems embedded in them is essential. In here, therefore, a fully biocompatible methodology for real-time optical sensing of pH within porous materials is presented. A genetically encoded ratiometric pH sensor, the enhanced superfolder yellow fluorescent protein (sYFP), is used to functionalize the internal surface of different materials, including natural and synthetic organic polymers as well as silica frameworks. By using controlled, tailor-made immobilization, sYFP is homogenously distributed within these materials and so enables, via self-referenced imaging analysis, pH measurements in high accuracy and with useful spatiotemporal resolution. Evolution of internal pH is monitored in consequence of a proton-releasing enzymatic reaction, the hydrolysis of penicillin by a penicillin acylase, taking place in solution or confined to the solid surface of the porous matrix. Unlike optochemical pH sensors, which often interfere with biological function, labeling with sYFP enables pH sensing without altering the immobilized enzyme's properties in any of the materials used. Fast response of sYFP to pH change permits evaluation of biochemical kinetics within the solid materials. Thus, pH sensing based on immobilized sYFP represents a broadly applicable technique to the study of biology confined to the internally heterogeneous environment of solid matrices.


Subject(s)
Luminescent Proteins/analysis , Coloring Agents , Enzymes, Immobilized , Hydrogen-Ion Concentration , Hydrolysis , Porosity
6.
Trends Biotechnol ; 31(3): 194-203, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23384504

ABSTRACT

Enzyme immobilization on solid supports has been key to biotransformation development. Although technologies for immobilization have largely reached maturity, the resulting biocatalysts are not well understood mechanistically. One limitation is that their internal environment is usually inferred from external data. Therefore, biological consequences of the immobilization remain masked by physical effects of mass transfer, obstructing further development. Work reviewed herein shows that opto-chemical sensing performed directly within the solid support enables the biocatalyst's internal environment to be uncovered quantitatively and in real time. Non-invasive methods of intraparticle pH and O2 determination are presented, and their use as process analytical tools for development of heterogeneous biocatalysts is described. Method diversification to other analytes remains a challenging task for the future.


Subject(s)
Biotechnology/methods , Chemistry Techniques, Analytical/methods , Enzymes, Immobilized/metabolism , Enzymes/metabolism , Photometry/methods , Enzymes/chemistry , Enzymes, Immobilized/chemistry , Hydrogen-Ion Concentration , Oxygen/analysis , Time Factors
7.
Biotechnol Bioeng ; 110(8): 2086-95, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23436425

ABSTRACT

Enzymatic O2 -dependent oxidations are receiving increased attention for use in fine chemicals synthesis. Solid supported oxidation catalysts often show poor efficiency due to pronounced O2 diffusion restriction. Internal O2 supply therefore constitutes a key parameter for optimizing the enzyme immobilization. We herein describe an optical sensing method for quantitation of space-averaged intraparticle O2 concentrations in porous Sepabeads carriers. The method applies phosphorescence lifetime measurements on Sepabeads labeled with an O2 sensitive indicator dye. Using glucose oxidase immobilized at different loadings (0.005-12 mg/g) on labeled Sepabeads, we analyzed in real time during the enzymatic reaction the formation of O2 concentration differences between bulk liquid and the intraparticle environment. We show that the O2 gradient at apparent steady state increased with increasing enzyme loading, so that O2 eventually became totally depleted from inside the highly loaded carriers. We also show that the residual intraparticle O2 concentration was correlated with the catalytic effectiveness factor (η) of the enzyme immobilizate used, thus providing a direct measure of the magnitude of O2 diffusion limitation. Once corrected for diffusional effect, η was no longer dependent on enzyme loading and its constant value now described the intrinsic activity of immobilized glucose oxidase. Three common procedures of enzyme immobilization, involving adsorption, cross-linking, and covalent attachment, are shown to differ widely concerning the obtained intrinsic activity. Therefore, intraparticle O2 concentration data enable distinction between diffusional restriction and activity loss as the two principal factors limiting the effectiveness of immobilized O2 dependent enzymes, and thus they inform rational design of an optimally active oxidation biocatalyst on solid support.


Subject(s)
Enzymes, Immobilized/metabolism , Glucose Oxidase/metabolism , Oxygen/analysis , Particulate Matter/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...