Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 93(10): 103518, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36319323

ABSTRACT

We present measurements of ion velocity distribution profiles obtained by laser induced fluorescence (LIF) on an explosive laser produced plasma. The spatiotemporal evolution of the resulting carbon ion velocity distribution was mapped by scanning through the Doppler-shifted absorption wavelengths using a tunable, diode-pumped laser. The acquisition of these data was facilitated by the high repetition rate capability of the ablation laser (1 Hz), which allowed for the accumulation of thousands of laser shots in short experimental times. By varying the intensity of the LIF beam, we were able to explore the effects of fluorescence power against the laser irradiance in the context of evaluating the saturation vs the non-saturation regime. The small size of the LIF beam led to high spatial resolution of the measurement compared to other ion velocity distribution measurement techniques, while the fast-gate operation mode of the camera detector enabled the measurement of the relevant electron transitions.

2.
Rev Sci Instrum ; 92(9): 093102, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34598480

ABSTRACT

We present optical Thomson scattering measurements of electron density and temperature in a large-scale (∼2 cm) exploding laser plasma produced by irradiating a solid target with a high-energy (5-10 J) laser pulse at a high repetition rate (1 Hz). The Thomson scattering diagnostic matches this high repetition rate. Unlike previous work performed in single shots at much higher energies, the instrument allows for point measurements anywhere inside the plasma by automatically translating the scattering volume using motorized stages as the experiment is repeated at 1 Hz. Measured densities around 4 × 1016 cm-3 and temperatures around 7 eV result in a scattering parameter near unity, depending on the distance from the target. The measured spectra show the transition from collective scattering close to the target to non-collective scattering at larger distances. Densities obtained by fitting the weakly collective spectra agree to within 10% with an irradiance calibration performed via Raman scattering in nitrogen.

3.
Rev Sci Instrum ; 91(10): 103103, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33138584

ABSTRACT

Laser-produced plasma velocity distributions are an important, but difficult quantity to measure. We present a non-invasive technique for measuring individual charge state velocity distributions of laser-produced plasmas using a high temporal and spectral resolution monochromator. The novel application of this technique is its ability to detect particles up to 7 m from their inception (significantly larger than most laboratory plasma astrophysics experiments, which take place at or below the millimeter scale). The design and assembly of this diagnostic is discussed in terms of maximizing the signal to noise ratio, maximizing the spatial and temporal resolution, and other potential use cases. The analysis and results of this diagnostic are demonstrated by directly measuring the time-of-flight velocity of all ion charge states in a laser produced carbon plasma.

4.
Rev Sci Instrum ; 87(11): 11E701, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27910524

ABSTRACT

We present optical Thomson scattering results that image for the first time in a single measurement the spatial transition from collective to non-collective scattering. Data were taken in the Phoenix laser laboratory at the University of California, Los Angeles. The Raptor laser was used to ablate a carbon plasma, which was diagnosed with the frequency-doubled Phoenix laser serving as a Thomson scattering probe. Scattered light was collected from the laser plasma up to 10 cm from the target surface and up to 10 us after ablation, and imaged with high spatial and spectral resolutions. The results show a strong Thomson collective feature close to the target surface that smoothly transitions to a non-collective feature over several mm.

5.
Article in English | MEDLINE | ID: mdl-25375430

ABSTRACT

Two-dimensional hybrid simulations of super-Alfvénic expanding debris plasma interacting with an inhomogeneous ambient plasma are presented. The simulations demonstrate improved collisionless coupling of energy to the ambient ions when encountering a density gradient. Simulations of an expanding cylinder running into a step function gradient are performed and compared to a simple analytical theory. Magnetic flux probe data from a laboratory shock experiment are compared to a simulation with a more realistic debris expansion and ambient ion density. The simulation confirms that a shock is formed and propagates within the high density region of ambient plasma.

6.
Rev Sci Instrum ; 83(10): 10D503, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126847

ABSTRACT

Paramagnetic Faraday rotator glass (rare-earth doped borosilicate) with a high Verdet constant will be used to measure the magnetic field inside of low density Helium plasmas (T(e) ~ 5 eV, T(i) ~ 1 eV) with a density of n ~ 10(12) cm(-3). Linearly polarized light is sent through the glass such that the plane of polarization is rotated by an angle that depends on the strength of the magnetic field in the direction of propagation and the length of the crystal (6 mm). The light is then passed into an analyzer and photo-detector setup to determine the change in polarization angle. This setup can detect magnetic fields up to 5 kG with a resolution of <5 G and a temporal resolution on the order of a nanosecond. The diagnostic will be used to characterize the structure and evolution of laser-driven collisionless shocks in large magnetized plasmas.

7.
Rev Sci Instrum ; 83(10): 10E515, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23127022

ABSTRACT

Planar laser induced fluorescence (PLIF) imaging can potentially assess ion distributions and coupling in the context of super-Alfvénic ablation plasma expansions into magnetized background plasmas. In this feasibility study, we consider the application of PLIF to rapidly expanding carbon plasmas generated via energetic laser ablation of graphite. By utilizing hydrodynamic and collisional-radiative simulations, we identify schemes accessible to commercially available tunable lasers for the C I atom, the C II ion, and the C V ion. We then estimate the signal-to-noise ratios yielded by the schemes under reasonable experimental configurations.

8.
Rev Sci Instrum ; 81(10): 10D518, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21033873

ABSTRACT

A scalable setup using injection by frequency conversion to establish a multipassing cavity for noncollective Thomson scattering on low density plasmas is presented. The cavity is shown to support >10 passes through the target volume with a 400% increase in energy on target versus a single-pass setup. Rayleigh scattering experiments were performed and demonstrate the viability of the cell to study low density plasmas of the order of 10(12)-10(13) cm(-3). A high-repetition, low-energy, single-pass Thomson scattering setup was also performed on the University of California, Los Angeles Large Plasma Device and shows that the multipass cavity could have a significant advantage over the high-repetition approach due to the cavity setup's inherently higher signal per shot.

9.
Rev Sci Instrum ; 80(11): 113505, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19947729

ABSTRACT

A three-axis, 2.5 mm overall diameter differential magnetic probe (also known as B-dot probe) is discussed in detail from its design and construction to its calibration and use as diagnostic of fast transient effects in exploding plasmas. A design and construction method is presented as a means to reduce stray pickup, eliminate electrostatic pickup, reduce physical size, and increase magnetic signals while maintaining a high bandwidth. The probe's frequency response is measured in detail from 10 kHz to 50 MHz using the presented calibration method and compared to theory. The effect of the probe's self-induction as a first order correction in frequency, O(omega), on experimental signals and magnetic field calculations is discussed. The probe's viability as a diagnostic is demonstrated by measuring the magnetic field compression and diamagnetism of a sub-Alfvenic (approximately 500 km/s, M(A) approximately 0.36) flow created from the explosion of a high-density energetic laser plasma through a cooler, low-density, magnetized ambient plasma.

10.
Rev Sci Instrum ; 79(10): 10E917, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19044572

ABSTRACT

A high contrast 12.6 keV Kr K alpha source has been demonstrated on the petawatt-class Titan laser facility using strongly clustering Kr gas jet targets. The contrast ratio (K alpha to continuum) is 65, with a competitive ultrashort pulse laser to x-ray conversion efficiency of 10(-5). Filtered shadowgraphy indicates that the Kr K alpha and K beta x rays are emitted from a roughly 1x2 mm(2) emission volume, making this source suitable for area backlighting and scattering. Spectral calculations indicate a typical bulk electron temperature of 50-70 eV (i.e., mean ionization state 13-16), based on the observed ratio of K alpha to K beta. Kr gas jets provide a debris-free high energy K alpha source for time-resolved diagnosis of dense matter.

SELECTION OF CITATIONS
SEARCH DETAIL
...