Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; 7(7): e2300069, 2023 07.
Article in English | MEDLINE | ID: mdl-37156748

ABSTRACT

Viral-mediated delivery of the CRISPR-Cas9 system is one the most commonly used techniques to modify the genome of a cell, with the aim of analyzing the function of the targeted gene product. While these approaches are rather straightforward for membrane-bound proteins, they can be laborious for intracellular proteins, given that selection of full knockout (KO) cells often requires the amplification of single-cell clones. Moreover, viral-mediated delivery systems, besides the Cas9 and gRNA, lead to the integration of unwanted genetic material, such as antibiotic resistance genes, introducing experimental biases. Here, an alternative non-viral delivery approach is presented for CRISPR/Cas9, allowing efficient and flexible selection of KO polyclonal cells. This all-in-one mammalian CRISPR-Cas9 expression vector, ptARgenOM, encodes the gRNA and the Cas9 linked to a ribosomal skipping peptide sequence followed by the enhanced green fluorescent protein and the puromycin N-acetyltransferase, allowing for transient, expression-dependent selection and enrichment of isogenic KO cells. After evaluation using more than 12 distinct targets in 6 cell lines, ptARgenOM is found to be efficient in producing KO cells, reducing the time required to obtain a polyclonal isogenic cell line by 4-6 folds. Altogether ptARgenOM provides a simple, fast, and cost-effective delivery tool for genome editing.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Animals , CRISPR-Cas Systems/genetics , Gene Editing/methods , Cell Line , Mammals/genetics
2.
Nanomaterials (Basel) ; 11(2)2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33671136

ABSTRACT

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF cytokine superfamily. TRAIL is able to induce apoptosis through engagement of its death receptors DR4 and DR5 in a wide variety of tumor cells while sparing vital normal cells. This makes it a promising agent for cancer therapy. Here, we present two different ways of covalently grafting TRAIL onto maghemite nanoparticles (NPs): (a) by using carboxylic acid groups of the protein to graft it onto maghemite NPs previously functionalized with amino groups, and (b) by using the amino functions of the protein to graft it onto NPs functionalized with carboxylic acid groups. The two resulting nanovectors, NH-TRAIL@NPs-CO and CO-TRAIL@NPs-NH, were thoroughly characterized. Biological studies performed on human breast and lung carcinoma cells (MDA-MB-231 and H1703 cell lines) established these nanovectors are potential agents for cancer therapy. The pro-apoptotic effect is somewhat greater for CO-TRAIL@NPs-NH than NH-TRAIL@NPs-CO, as evidenced by viability studies and apoptosis analysis. A computational study indicated that regardless of whether TRAIL is attached to NPs through an acid or an amino group, DR4 recognition is not affected in either case.

3.
Cell Death Differ ; 24(3): 500-510, 2017 03.
Article in English | MEDLINE | ID: mdl-28186505

ABSTRACT

APO2L/TRAIL (TNF-related apoptosis-inducing ligand) induces death of tumor cells through two agonist receptors, TRAIL-R1 and TRAIL-R2. We demonstrate here that N-linked glycosylation (N-glyc) plays also an important regulatory role for TRAIL-R1-mediated and mouse TRAIL receptor (mTRAIL-R)-mediated apoptosis, but not for TRAIL-R2, which is devoid of N-glycans. Cells expressing N-glyc-defective mutants of TRAIL-R1 and mouse TRAIL-R were less sensitive to TRAIL than their wild-type counterparts. Defective apoptotic signaling by N-glyc-deficient TRAIL receptors was associated with lower TRAIL receptor aggregation and reduced DISC formation, but not with reduced TRAIL-binding affinity. Our results also indicate that TRAIL receptor N-glyc impacts immune evasion strategies. The cytomegalovirus (CMV) UL141 protein, which restricts cell-surface expression of human TRAIL death receptors, binds with significant higher affinity TRAIL-R1 lacking N-glyc, suggesting that this sugar modification may have evolved as a counterstrategy to prevent receptor inhibition by UL141. Altogether our findings demonstrate that N-glyc of TRAIL-R1 promotes TRAIL signaling and restricts virus-mediated inhibition.


Subject(s)
Apoptosis/drug effects , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/toxicity , Amino Acid Sequence , Animals , Cell Line , Cytomegalovirus/metabolism , Glycosylation , HCT116 Cells , Humans , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mutagenesis, Site-Directed , Nanoparticles/chemistry , Receptors, TNF-Related Apoptosis-Inducing Ligand/deficiency , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Sequence Alignment , Tunicamycin/toxicity , Viral Proteins/genetics , Viral Proteins/metabolism
4.
Methods Mol Biol ; 1557: 19-31, 2017.
Article in English | MEDLINE | ID: mdl-28078579

ABSTRACT

Analysis of CD95/Fas complexes by immunoprecipitation has long relied on the monoclonal antibody APO1 or tagged recombinant Fas ligand. Immunoprecipitation is an elegant and efficient procedure to investigate endogenous protein interactions or complexes. Provided that the targeted complex is soluble in mild detergent these complexes can be recovered using protein A/G-coupled Sepharose beads and further analyzed after denaturation and electrophoretic separation by western blotting or mass spectrometry. Herein, we describe in detail the method used in our laboratory to immunoprecipitate and analyze by immunoblot complexes containing caspase-8, using a commercial antibody directed against caspase-8.


Subject(s)
Caspase 8/metabolism , Death Domain Receptor Signaling Adaptor Proteins/metabolism , Immunoprecipitation , Blotting, Western , Fas Ligand Protein/metabolism , Immunoprecipitation/methods , Multiprotein Complexes/metabolism , Protein Binding , fas Receptor/metabolism
5.
Oncotarget ; 8(6): 9974-9985, 2017 Feb 07.
Article in English | MEDLINE | ID: mdl-28039489

ABSTRACT

TRAIL induces selective tumor cell death through TRAIL-R1 and TRAIL-R2. Despite the fact that these receptors share high structural homologies, induction of apoptosis upon ER stress, cell autonomous motility and invasion have solely been described to occur through TRAIL-R2. Using the TALEN gene-editing approach, we show that TRAIL-R1 can also induce apoptosis during unresolved unfolded protein response (UPR). Likewise, TRAIL-R1 was found to co-immunoprecipitate with FADD and caspase-8 during ER stress. Its deficiency conferred resistance to apoptosis induced by thaspigargin, tunicamycin or brefeldin A. Our data also demonstrate that tumor cell motility and invasion-induced by TRAIL-R2 is not cell autonomous but induced in a TRAIL-dependant manner. TRAIL-R1, on the other hand, is unable to trigger cell migration owing to its inability to induce an increase in calcium flux. Importantly, all the isogenic cell lines generated in this study revealed that apoptosis induced TRAIL is preferentially induced by TRAIL-R1. Taken together, our results provide novel insights into the physiological functions of TRAIL-R1 and TRAIL-R2 and suggest that targeting TRAIL-R1 for anticancer therapy is likely to be more appropriate owing to its lack of pro-motile signaling capability.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/drug therapy , Colonic Neoplasms/drug therapy , Endoplasmic Reticulum Stress/drug effects , Receptors, TNF-Related Apoptosis-Inducing Ligand/agonists , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , CHO Cells , Calcium Signaling/drug effects , Caspase 8/metabolism , Cell Movement/drug effects , Chick Embryo , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Cricetulus , Dose-Response Relationship, Drug , Fas-Associated Death Domain Protein/metabolism , Female , Gene Expression Regulation, Neoplastic , HCT116 Cells , Humans , Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Signal Transduction/drug effects , Time Factors , Transfection
6.
Mol Cell Biochem ; 418(1-2): 91-102, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27344165

ABSTRACT

To examine and compare the mitochondria-related cellular mechanisms by which tacrolimus (TAC) or sirolimus (SIR) immunosuppressive drugs alter the pancreatic exocrine and endocrine ß-cell fate. Human exocrine PANC-1 and rat endocrine insulin-secreting RIN-m5F cells and isolated rat islets were submitted to 1-100 nM TAC or SIR. In cultures, insulin secretion was measured as endocrine cell function marker. Apoptosis was quantified by annexin 5 and propidium iodide staining. Cleaved caspase-3, Bax apoptosis indicators, and p53, p21 cell cycle regulators were detected by Western blot. Cell cycle and mitochondrial membrane potential (ΔΨm) were analyzed by flow cytometry and SA-beta-galactosidase (SA-ß-gal) activity by fluorescence microscopy. Only TAC reduced insulin secretion by RIN-m5F after 24 h. TAC and SIR promoted moderate apoptosis in both PANC-1 and RIN-m5F after 24 h. Apoptosis was associated with up-regulated Bax (threefold) and cleaved caspase-3 (fivefold) but only in PANC-1, while p53 and p21 were up-regulated (twofold) in both cell lines. ΔΨm was impaired only in PANC-1 by TAC and SIR. Only SIR prompted cell cycle arrest in both cell lines. The induction of a premature senescence-like phenotype was confirmed in isolated islets by SA-ß-gal activity. TAC and SIR are early inducers of pancreatic cell dysfunction and apoptosis but differentially alter endocrine and exocrine cells via mitochondrial-driven pathways. In rat islets, TAC and SIR prompt a senescence-like phenotype.


Subject(s)
Apoptosis/drug effects , Insulin-Secreting Cells/metabolism , Mitochondria/metabolism , Pancreas, Exocrine/metabolism , Signal Transduction/drug effects , Sirolimus/pharmacology , Tacrolimus/pharmacology , Animals , Cell Line , Humans , Membrane Potential, Mitochondrial/drug effects , Rats
7.
J Cell Mol Med ; 20(2): 231-42, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26607759

ABSTRACT

Inflammation and hyperglycaemia are associated with a prothrombotic state. Cell-derived microparticles (MPs) are the conveyors of active procoagulant tissue factor (TF) and circulate at high concentration in diabetic patients. Liraglutide, a glucagon-like peptide (GLP)-1 analogue, is known to promote insulin secretion and ß-cell preservation. In this in vitro study, we examined the link between insulin impairment, procoagulant activity and plasma membrane remodelling, under inflammatory conditions. Rin-m5f ß-cell function, TF activity mediated by MPs and their modulation by 1 µM liraglutide were examined in a cell cross-talk model. Methyl-ß-cyclodextrine (MCD), a cholesterol depletor, was used to evaluate the involvement of raft on TF activity, MP shedding and insulin secretion as well as Soluble N-éthylmaleimide-sensitive-factor Attachment protein Receptor (SNARE)-dependent exocytosis. Cytokines induced a two-fold increase in TF activity at MP surface that was counteracted by liraglutide. Microparticles prompted TF activity on the target cells and a two-fold decrease in insulin secretion via protein kinase A (PKA) and p38 signalling, that was also abolished by liraglutide. Large lipid raft clusters were formed in response to cytokines and liraglutide or MCD-treated cells showed similar patterns. Cells pre-treated by saturating concentration of the GLP-1r antagonist exendin (9-39), showed a partial abolishment of the liraglutide-driven insulin secretion and liraglutide-decreased TF activity. Measurement of caspase 3 cleavage and MP shedding confirmed the contribution of GLP-1r-dependent and -independent pathways. Our results confirm an integrative ß-cell response to GLP-1 that targets receptor-mediated signalling and membrane remodelling pointing at the coupling of insulin secretion and inflammation-driven procoagulant events.


Subject(s)
Cell Membrane/physiology , Glucagon-Like Peptide-1 Receptor/metabolism , Inflammation/pathology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/physiology , Insulin/metabolism , Thromboplastin/metabolism , Animals , Caspase 3/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Cell-Derived Microparticles/drug effects , Cell-Derived Microparticles/metabolism , Cell-Derived Microparticles/pathology , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Exocytosis/drug effects , Exocytosis/physiology , Glucagon-Like Peptide 1/metabolism , Hyperglycemia/metabolism , Hyperglycemia/pathology , Inflammation/metabolism , Insulin-Secreting Cells/drug effects , Liraglutide/pharmacology , MAP Kinase Signaling System/drug effects , Peptide Fragments/metabolism , Rats , SNARE Proteins/metabolism
8.
J Cyst Fibros ; 13(2): 219-26, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24095207

ABSTRACT

BACKGROUND: Diabetes in cystic fibrosis (CF) is a result of exocrine pancreas alteration followed by endocrine dysfunction at a later stage. Microparticles (MPs) are plasma membrane fragments shed from stimulated or damaged cells that act as cellular effectors. Our aim was to identify a new form of interaction between exocrine and endocrine pancreatic cells mediated by exocrine MPs, in the context of recurrent infection in CF. METHODS: MPs from either human exocrine CFTRΔF508-mutated (CFPAC-1) cells or exocrine normal pancreatic (PANC-1) cells were collected after treatment by LPS from Pseudomonas aeruginosa and applied to rat endocrine normal insulin-secreting RIN-m5F cells. MP membrane integration in target cells was established by confocal microscopy and flow cytometry using PKH26 lipid probe. Apoptosis, lysosomal activity, insulin secretion were measured after 18 h. MP-mediated NF-κB activation was measured in HEK-Blue reporter cells by SEAP reporter gene system and in RIN-m5F cells by Western blot. In endocrine normal cells, CFTR inhibition was achieved using Inhibitor-172. RESULTS: Compared to PANC-1, MPs from CFPAC-1 significantly reduced insulin secretion and lysosomal activity in RIN-m5F. MPs induced NF-κB activation by increasing the level of IκB phosphorylation. Moreover, the inhibition of NF-κB activation using specific inhibitors was associated with a restored insulin secretion. Interestingly, CFTR inhibition in normal RIN-m5F cells promoted apoptosis and decreased insulin secretion. CONCLUSIONS: During recurrent infections associated with CF, exocrine MPs may contribute to endocrine cell dysfunction via NF-κB pathways. Membrane CFTR dysfunction is associated with decreased insulin secretion.


Subject(s)
Cell-Derived Microparticles/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis , Diabetes Mellitus , Islets of Langerhans/metabolism , Lipopolysaccharides/metabolism , Pancreas, Exocrine/metabolism , Pseudomonas Infections , Pseudomonas aeruginosa/physiology , Animals , Cell Communication , Cell Line , Cystic Fibrosis/complications , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Diabetes Mellitus/etiology , Diabetes Mellitus/metabolism , Humans , Insulin/metabolism , NF-kappa B/metabolism , Pseudomonas Infections/complications , Pseudomonas Infections/metabolism , Pseudomonas Infections/physiopathology , Rats , Recurrence , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...