Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 375(4): 241-50, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17453175

ABSTRACT

F15063 (N-[(2,2-dimethyl-2,3-dihydro-benzofuran-7-yloxy)ethyl]-3-(cyclopent-1-enyl)-benzylamine fumarate salt) is a novel potential antipsychotic with dopamine D(2)/D(3) blocking properties and agonist activity at 5-HT(1A) and D(4) receptors. The pertinent parameter for pharmacological activity of antipsychotics appears to be central D2-like receptor occupancy. However, its duration is not necessarily correlated with drug plasma levels, on which clinical dosing regimens are often based. Thus, we compared in mice the duration of actions of F15063 and haloperidol to (1) inhibit apomorphine-induced climbing and sniffing (behavioural measures of D2-like receptor antagonism) and (2) occupy D2-like receptors in vivo in the striatum and olfactory tubercles (inhibition of [(3)H]nemonapride binding). Finally, we measured plasma levels of F15063. D2-like receptor occupancy in the striatum remained elevated at 1, 4 and 8 h postadministration, with both F15063 (ID(50): 7.1, 3.6 and 16.5 mg/kg p.o., respectively) and the typical antipsychotic, haloperidol (ID(50): 1.4, 0.52 and 0.53 mg/kg p.o., respectively). This was paralleled by a protracted inhibition of apomorphine-induced climbing (ED(50): 0.9, 2.8 and 3.6 mg/kg p.o., and 0.21, 0.37 and 0.87 mg/kg p.o., respectively, for F15063 and haloperidol). In contrast, after administration of 10 mg/kg p.o. of F15063, its plasma levels decreased rapidly: 15.2, 2.1 and 0.6 ng/ml, 1, 4 and 8 h after administration, respectively. A similar pattern of results was observed when F15063 and haloperidol were administered i.p. and s.c., respectively. To summarise, the time-course of D2-like receptor occupancy and inhibition of apomorphine-climbing (and sniffing) behaviours was similarly long lasting with F15063 and haloperidol. In addition, the durations of action of F15063 and haloperidol in a behavioural model of antipsychotic-like activity were closely correlated to their occupancy of central D2-like receptors, and much longer than their presence in plasma.


Subject(s)
Antipsychotic Agents/pharmacology , Benzofurans/pharmacology , Benzylamines/pharmacology , Cyclopentanes/pharmacology , Dopamine Antagonists/pharmacology , Dopamine D2 Receptor Antagonists , Receptors, Dopamine D3/antagonists & inhibitors , Receptors, Dopamine D4/agonists , Serotonin 5-HT1 Receptor Agonists , Serotonin Receptor Agonists/pharmacology , Animals , Antipsychotic Agents/blood , Apomorphine/pharmacology , Benzamides/metabolism , Benzofurans/blood , Benzylamines/blood , Cyclopentanes/blood , Haloperidol/pharmacology , Male , Mice
2.
Naunyn Schmiedebergs Arch Pharmacol ; 373(6): 441-50, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16947046

ABSTRACT

Interaction with dopamine D2-like receptors plays a major role in the therapeutic effects of antipsychotic drugs. We examined in vivo dopamine D2 receptor occupancy of various established and potential antipsychotics in mouse striatum and olfactory tubercles 1 h after administration of the compound, using [3H]nemonapride as a ligand. All the compounds reduced in vivo binding of [3H]nemonapride in the striatum. When administered systemically, conventional antipsychotics, D2 antagonists, nemonapride (ID50: 0.034 mg/kg), eticlopride (0.047), haloperidol (0.11) and raclopride (0.11) potently inhibited [3H]nemonapride binding. The 'atypical' antipsychotics, risperidone (0.18), ziprasidone (0.38), aripiprazole (1.6), olanzapine (0.99), and clozapine (11.1) were less potent for occupying D2-like receptors. New compounds, displaying marked agonism at 5-HT1A receptors in addition to D2 receptor affinity, exhibited varying D2 receptor occupancy: bifeprunox (0.25), SLV313 (0.78), SSR181507 (1.6) and sarizotan (6.7). ID50 values for inhibition of [3H]nemonapride binding in the striatum correlated with those in the olfactory tubercles (r=0.95, P<0.0001). These values also correlated with previously-reported in vitro affinity of the compounds at rat D2 receptors (r=0.85, P=0.0001) and with inhibition of apomorphine-induced climbing in mice (r=0.79 P=0.0005). In contrast, there was no significant correlation between ID50 values herein and previously-reported ED50 values for catalepsy in mice. These data indicate that: (1) there is no difference in D2 receptor occupancy in limbic versus striatal regions between most classical and atypical or potential antipsychotics; and (2) high occupancy of D2 receptors can be dissociated from catalepsy, if the drugs also activate 5-HT1A receptors. Taken together, these data support the strategy of simultaneously targeting D2 receptor blockade and 5-HT1A receptor activation for new antipsychotics.


Subject(s)
Antipsychotic Agents/metabolism , Neostriatum/metabolism , Olfactory Bulb/metabolism , Receptors, Dopamine D2/metabolism , Animals , Apomorphine/antagonists & inhibitors , Apomorphine/pharmacology , Behavior, Animal/drug effects , Benzamides/metabolism , Binding, Competitive , Catalepsy/chemically induced , Catalepsy/physiopathology , Dopamine Agonists/pharmacology , Dopamine Antagonists/metabolism , Dose-Response Relationship, Drug , Male , Mice , Serotonin Receptor Agonists/metabolism , Serotonin Receptor Agonists/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...