Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 384(4): 922-30, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16432721

ABSTRACT

Direct hyphenation of electrothermal atomic-absorption spectroscopy (ETAAS) to sedimentation field-flow fractionation (SdFFF) has been developed to enable elemental characterization of submicron particles as a function of size. This hyphenation is particularly suitable for characterizing colloidal particles of environmental interest, for example water-borne particles. The interface is an automatic capillary injection device (CID) which enables direct introduction of large and variable volumes of colloidal particle suspensions into a hot graphite furnace, thus preconcentrating the colloidal particles on the furnace walls. The method was validated by determination of Fe in certified submicron Fe2O3. The procedure was set up by first optimizing the SdFFF fractionation under programmed field conditions, thus enabling optimum fractionation of particle size. The ETAAS procedure was then tested to determine whether it could be used for direct analysis of Fe2O3 slurries without the need for a mineralization step. CID coupled to ETAAS was subsequently exploited for its ability to enhance the sensitivity, because of the increased injection volume. Statistical tests and data handling were conducted to prove the suitability of the ETAAS-CID module. Finally, off-line and on-line ETAAS-CID-SdFFF hyphenation were investigated. These experiments emphasized the advantages of the on-line coupling, because it enables synchronized sampling, enrichment, and elemental analysis of the flowing eluate. The benefits of the proposed hyphenation are the high specificity of analytical detection, increased sensitivity, reduction of analysis time, and minimum sample handling and contamination.

2.
Int J Pharm ; 307(1): 103-13, 2006 Jan 03.
Article in English | MEDLINE | ID: mdl-16289882

ABSTRACT

The prodrug 5'-octanoyl-CPA (Oct-CPA) of the antiischemic N6-cyclopentyladenosine (CPA) has been encapsulated by nanoprecipitation in poly(lactic acid) nanoparticles, which have been recovered by gel-filtration, ultra-centrifugation or dialysis. We have analysed how different surfactants and purification methods can influence the nanoparticle characteristics. The particle sizes have been obtained by scanning electron microscope, whereas a SdFFF system was employed to detect their distributions. The Oct-CPA release from nanoparticles and stabilities in human blood of free and encapsulated prodrug have been analysed by HPLC techniques. The effects of nanoparticles on CPA interaction toward adenosine A1 receptor (its action site) have been analysed using radiolabelled drugs. The smallest nanoparticles and the best degree of homogeneity have been obtained using sodium cholate; the best recovery has been achieved by dialysis, whereas gel-filtration and ultra-centrifugation have induced the greatest removal of surfactants. The release of Oct-CPA was better controlled from the nanoparticles obtained using Pluronic F68 and purified by gel-filtration or ultra-centrifugation. Similarly, these nanoparticles better increased the stability of the prodrug in human blood. In particular, the nanoparticles purified by ultra-centrifugation induced a strong stability to a fraction of the encapsulated Oct-CPA. Any interference by unloaded nanoparticles has been registered for CPA-adenosine A1 receptor interaction.


Subject(s)
Adenosine/analogs & derivatives , Ischemia/drug therapy , Nanostructures , Prodrugs/chemistry , Adenosine/blood , Adenosine/chemistry , Adenosine/pharmacokinetics , Adenosine A1 Receptor Agonists , Cells, Cultured , Chemistry, Pharmaceutical , Drug Carriers , Drug Stability , Humans , Hydrolysis , Particle Size , Poloxamer/chemistry , Prodrugs/metabolism , Prodrugs/pharmacokinetics , Receptor, Adenosine A1/metabolism , Sodium Cholate/chemistry , Surface-Active Agents/chemistry
3.
J Chromatogr A ; 871(1-2): 449-60, 2000 Feb 25.
Article in English | MEDLINE | ID: mdl-10735325

ABSTRACT

The combined employment of the SPLITT (split-flow thin) cell--a relatively new system for fast, continuous binary separation--and of gravitational field-flow fractionation (GrFFF)--a fractionation technique suitable for micron particle size distribution determination--was investigated for starch separation and characterization. Emphasis is placed on the main advantages of both techniques: operating under gentle earth gravity field, low cost and ease of maintenance. The reproducibility of GrFFF is demonstrated. Both the SPLITT separation and GrFFF fractionation results were checked by optical microscopy. Application examples of typical starch fractionation experiments are reported and discussed.


Subject(s)
Starch/analysis , Triticum/chemistry , Chemical Fractionation/methods , Particle Size , Starch/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...