Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 32(10): 1310-23, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19453481

ABSTRACT

Isotopic labelling experiments were conducted to assess relationships among (13)C of recently assimilated carbon (deltaC(A)), foliage respiration (deltaC(F)), soluble carbohydrate (deltaC(SC)), leaf waxes (deltaC(LW)) and bulk organic matter (deltaC(OM)). Slash pine, sweetgum and maize were grown under (13)C depleted CO(2) to label biomass and then placed under ambient conditions to monitor the loss of label. In pine and sweetgum, deltaC(F) of labelled plants (approximately -44 and -35 per thousand, respectively) rapidly approached control values but remained depleted by approximately 4-6 per thousand after 3-4 months. For these tree species, no or minimal label was lost from deltaC(SC), deltaC(LW) and deltaC(OM) during the observation periods. deltaC(F) and deltaC(SC) of labelled maize plants rapidly changed and were indistinguishable from controls after 1 month, while deltaC(LW) and deltaC(OM) more slowly approached control values and remained depleted by 2-6 per thousand. Changes in deltaC(F) in slash pine and sweetgum fit a two-pool exponential model, with the fast turnover metabolic pool (approximately 3-4 d half-life) constituting only 1-2% of the total. In maize, change in deltaC(F) fits a single pool model with a half-life of 6.4 d. The (13)C of foliage respiration and biochemical pools reflect temporally integrated values of deltaC(A), with change in isotopic composition dampened by the size of metabolic carbon reserves and turnover rates.


Subject(s)
Carbon Dioxide/metabolism , Carbon/metabolism , Plant Leaves/metabolism , Biomass , Carbohydrates/analysis , Carbon Isotopes/metabolism , Liquidambar/metabolism , Models, Chemical , Pinus/metabolism , Species Specificity , Time Factors , Waxes/analysis , Zea mays/metabolism
2.
Oecologia ; 135(1): 67-77, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12647105

ABSTRACT

We measured the molecular and carbon isotopic composition of major leaf wax compound classes in northern mixed mesic prairie species (Agropyron smithii, Stipa viridula, Bouteloua gracilis, Tragopogon dubius) and in selected crops (Triticum aestivum, Brassica napus, Hordeum vulgare, Medicago sativa) of southern Alberta and also in aerosols collected 4 m above the prairie canopy. Our aims were to better constrain the wax biosynthetic carbon isotopic fractionation relative to the plant's carbon isotopic discrimination and to quantitatively assess the correspondence between wax composition in vegetation and in boundary layer aerosols. Wax molecular composition of the C(3)prairie species and bulked vegetation was characterized by high abundance of C(28) n-alkanol and C(31) n-alkane compounds whereas the C(4) species B. gracilis had several co-dominant n-alkanol and n-alkane compounds. Wax molecular composition of crop species differed significantly from that of prairie vegetation and was often dominated by a single compound. Results indicate that leaf wax isotopic composition is quantitatively related to the plant's carbon isotopic discrimination. Although species variations were evident, n-alcohol, n-acid and n-alkane wax compounds were on average depleted in (13)C by approximately 6.0+/-1 per thousand relative to total plant carbon. The magnitude of the depletion in wax delta(13)C was unaffected by environmental factors which altered photosynthetic carbon isotopic discrimination. No consistent difference in the magnitude of wax biosynthetic fractionation was observed between C(3) and C(4) species, indicating that photosynthetic pathway has little influence on the isotopic fractionation of wax during biosynthesis. The isotopic composition of ablated waxes in aerosols collected above the canopy was similar to that of the grassland vegetation but the molecular composition differed significantly and indicated that the source "footprint" of the ablated leaf wax particles we sampled in boundary layer air masses was of a regional or larger spatial scale.


Subject(s)
Biomarkers/analysis , Carbon Isotopes/analysis , Ecosystem , Plant Leaves/chemistry , Waxes/chemistry , Aerosols , Desert Climate , Environmental Monitoring/methods , Plants
3.
Nature ; 417(6889): 639-41, 2002 Jun 06.
Article in English | MEDLINE | ID: mdl-12050663

ABSTRACT

Carbon uptake by the oceans and by the terrestrial biosphere can be partitioned using changes in the (12)C/(13)C isotopic ratio (delta(13)C) of atmospheric carbon dioxide, because terrestrial photosynthesis strongly discriminates against (13)CO(2), whereas ocean uptake does not. This approach depends on accurate estimates of the carbon isotopic discrimination of terrestrial photosynthesis (Delta; ref. 5) at large regional scales, yet terrestrial ecosystem heterogeneity makes such estimates problematic. Here we show that ablated plant wax compounds in continental air masses can be used to estimate Delta over large spatial scales and at less than monthly temporal resolution. We measured plant waxes in continental air masses advected to Bermuda, which are mainly of North American origin, and used the wax isotopic composition to estimate Delta simply. Our estimates indicate a large (5 6 per thousand) seasonal variation in Delta of the temperate North American biosphere, with maximum discrimination occurring in late spring, coincident with the onset of production. We suggest that the observed seasonality arises from several factors, including seasonal shifts in the proportions of production by C(3) and C(4) plants, and environmentally controlled adjustments in the photosynthetic discrimination of C(3)-plant-dominated ecosystems.


Subject(s)
Aerosols/chemistry , Atmosphere/chemistry , Photosynthesis , Plants/metabolism , Waxes/metabolism , Bermuda , Biomarkers/analysis , Carbon Dioxide/metabolism , Carbon Isotopes/metabolism , Ecosystem , North America , Seasons , Waxes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...