Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Cell ; 187(9): 2209-2223.e16, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38670073

ABSTRACT

Nuclear factor κB (NF-κB) plays roles in various diseases. Many inflammatory signals, such as circulating lipopolysaccharides (LPSs), activate NF-κB via specific receptors. Using whole-genome CRISPR-Cas9 screens of LPS-treated cells that express an NF-κB-driven suicide gene, we discovered that the LPS receptor Toll-like receptor 4 (TLR4) is specifically dependent on the oligosaccharyltransferase complex OST-A for N-glycosylation and cell-surface localization. The tool compound NGI-1 inhibits OST complexes in vivo, but the underlying molecular mechanism remained unknown. We did a CRISPR base-editor screen for NGI-1-resistant variants of STT3A, the catalytic subunit of OST-A. These variants, in conjunction with cryoelectron microscopy studies, revealed that NGI-1 binds the catalytic site of STT3A, where it traps a molecule of the donor substrate dolichyl-PP-GlcNAc2-Man9-Glc3, suggesting an uncompetitive inhibition mechanism. Our results provide a rationale for and an initial step toward the development of STT3A-specific inhibitors and illustrate the power of contemporaneous base-editor and structural studies to define drug mechanism of action.


Subject(s)
CRISPR-Cas Systems , Hexosyltransferases , Lipopolysaccharides , Membrane Proteins , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Hexosyltransferases/metabolism , Hexosyltransferases/genetics , NF-kappa B/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Humans , Toll-Like Receptor 4/metabolism , Animals , CRISPR-Cas Systems/genetics , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Mice , HEK293 Cells , Inflammation/metabolism , Inflammation/genetics , Glycosylation , Cryoelectron Microscopy , Catalytic Domain , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
2.
Mol Cell ; 83(24): 4524-4537.e5, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38052210

ABSTRACT

N-glycans act as quality control tags by recruiting lectin chaperones to assist protein maturation in the endoplasmic reticulum. The location and composition of N-glycans (glyco-code) are key to the chaperone-selection process. Serpins, a class of serine protease inhibitors, fold non-sequentially to achieve metastable active states. Here, the role of the glyco-code in assuring successful maturation and quality control of two human serpins, alpha-1 antitrypsin (AAT) and antithrombin III (ATIII), is described. We find that AAT, which has glycans near its N terminus, is assisted by early lectin chaperone binding. In contrast, ATIII, which has more C-terminal glycans, is initially helped by BiP and then later by lectin chaperones mediated by UGGT reglucosylation. UGGT action is increased for misfolding-prone disease variants, and these clients are preferentially glucosylated on their most C-terminal glycan. Our study illustrates how serpins utilize N-glycan presence, position, and composition to direct their proper folding, quality control, and trafficking.


Subject(s)
Molecular Chaperones , Protein Folding , Humans , Molecular Chaperones/metabolism , Lectins/metabolism , Polysaccharides/chemistry , Quality Control
3.
JAMA Oncol ; 9(11): 1565-1573, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37768670

ABSTRACT

Importance: Patients with locally advanced non-human papillomavirus (HPV) head and neck cancer (HNC) carry an unfavorable prognosis. Chemoradiotherapy (CRT) with cisplatin or anti-epidermal growth factor receptor (EGFR) antibody improves overall survival (OS) of patients with stage III to IV HNC, and preclinical data suggest that a small-molecule tyrosine kinase inhibitor dual EGFR and ERBB2 (formerly HER2 or HER2/neu) inhibitor may be more effective than anti-EGFR antibody therapy in HNC. Objective: To examine whether adding lapatinib, a dual EGFR and HER2 inhibitor, to radiation plus cisplatin for frontline therapy of stage III to IV non-HPV HNC improves progression-free survival (PFS). Design, Setting, and Participants: This multicenter, phase 2, double-blind, placebo-controlled randomized clinical trial enrolled 142 patients with stage III to IV carcinoma of the oropharynx (p16 negative), larynx, and hypopharynx with a Zubrod performance status of 0 to 1 who met predefined blood chemistry criteria from October 18, 2012, to April 18, 2017 (median follow-up, 4.1 years). Data analysis was performed from December 1, 2020, to December 4, 2020. Intervention: Patients were randomized (1:1) to 70 Gy (6 weeks) plus 2 cycles of cisplatin (every 3 weeks) plus either 1500 mg per day of lapatinib (CRT plus lapatinib) or placebo (CRT plus placebo). Main Outcomes and Measures: The primary end point was PFS, with 69 events required. Progression-free survival rates between arms for all randomized patients were compared by 1-sided log-rank test. Secondary end points included OS. Results: Of the 142 patients enrolled, 127 (median [IQR] age, 58 [53-63] years; 98 [77.2%] male) were randomized; 63 to CRT plus lapatinib and 64 to CRT plus placebo. Final analysis did not suggest improvement in PFS (hazard ratio, 0.91; 95% CI, 0.56-1.46; P = .34) or OS (hazard ratio, 1.06; 95% CI, 0.61-1.86; P = .58) with the addition of lapatinib. There were no significant differences in grade 3 to 4 acute adverse event rates (83.3% [95% CI, 73.9%-92.8%] with CRT plus lapatinib vs 79.7% [95% CI, 69.4%-89.9%] with CRT plus placebo; P = .64) or late adverse event rates (44.4% [95% CI, 30.2%-57.8%] with CRT plus lapatinib vs 40.8% [95% CI, 27.1%-54.6%] with CRT plus placebo; P = .84). Conclusion and Relevance: In this randomized clinical trial, dual EGFR-ERBB2 inhibition with lapatinib did not appear to enhance the benefit of CRT. Although the results of this trial indicate that accrual to a non-HPV HNC-specific trial is feasible, new strategies must be investigated to improve the outcome for this population with a poor prognosis. Trial Registration: ClinicalTrials.gov Identifier: NCT01711658.


Subject(s)
Carcinoma , Head and Neck Neoplasms , Humans , Male , Female , Cisplatin/adverse effects , Lapatinib , Head and Neck Neoplasms/drug therapy , Carcinoma/drug therapy , Progression-Free Survival , Antineoplastic Combined Chemotherapy Protocols/adverse effects
4.
Sci Adv ; 9(11): eade8079, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36921042

ABSTRACT

Proteins destined for the secretory compartment of the cell are cotranslationally translocated into the endoplasmic reticulum. The majority of these proteins are N-glycosylated, a co- and posttranslational modification that ensures proper protein folding, stability, solubility, and cellular localization. Here, we show that the [Formula: see text] subunit of the signal recognition particle receptor (SR) is required for assembly of the N-glycosylation-competent translocon. We report that guanine analog chemical probes identified by high-throughput screening or mutation of the SR-[Formula: see text] guanosine triphosphate binding site cause an N-glycosylation-deficient phenotype. Neither method alters the association of SR-[Formula: see text] with SR-[Formula: see text], but both approaches reduce the association of SR-[Formula: see text] with the oligosaccharyltransferase complex. These experiments demonstrate that SR-[Formula: see text] has a previously unrecognized function coordinating endoplasmic reticulum translation with N-glycosylation.


Subject(s)
Endoplasmic Reticulum , Receptors, Cytoplasmic and Nuclear , Glycosylation , Receptors, Cytoplasmic and Nuclear/metabolism , Endoplasmic Reticulum/metabolism , Receptors, Peptide/metabolism
5.
Lung Cancer ; 176: 144-148, 2023 02.
Article in English | MEDLINE | ID: mdl-36641932

ABSTRACT

INTRODUCTION: Patients with brain metastases (BrMs) arising from EGFR and ALK driven non-small cell lung cancer (NSCLC) have favorable prognoses and evolving treatment options. We evaluated multicenter outcomes for stereotactic radiosurgery (SRS) to multiple (≥4) BrMs, where randomized data remain limited. METHODS: Data were collected retrospectively from 5 academic centers on EGFR and ALK NSCLC who received SRS to ≥4 BrMs with their first SRS treatment between 2008 and 2018. Analyzed endpoints included overall survival (OS), freedom from CNS progression (FFCNSP), and freedom from whole-brain radiotherapy (FFWBRT). RESULTS: Eighty-nine patients (50 EGFR, 39 ALK) received a total of 159 SRS treatments to 1,080 BrMs, with a median follow up of 51.3 months. The median number of BrMs treated with SRS treatment-1 was 6 (range 4-26) and median for all treatments was 9 (range 4-47). Sixteen patients (18 %) had received WBRT prior to SRS treatment-1. The median OS was 24.2, 21.2, and 33.2 months for all patients, EGFR, and ALK subsets, respectively. After multivariable adjustment, only receipt of a next-generation tyrosine kinase inhibitor was associated with OS (HR 0.40, p = 0.005). No differences in OS were observed based on number of BrMs treated. The median FFCNSP was 9.4, 11.6, and 7.5 months, for all patients, EGFR, and ALK subsets, respectively. After multivariable adjustment, the number of BrMs (continuous) treated during treatment-1 was the only negative prognostic factor associated with FFCNSP (HR 1.071, p = 0.045). The 5-year FFWBRT was 73.6 %. CONCLUSIONS: This multicenter analysis over a >10-year period demonstrated favorable OS, FFCNSP, and FFWBRT, in patients with EGFR and ALK driven NSCLC receiving SRS to ≥4 BrMs. These data support SRS as an option in the upfront and salvage setting for higher burden CNS disease in this population.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Radiosurgery , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Retrospective Studies , Brain Neoplasms/secondary , Receptor Protein-Tyrosine Kinases/genetics , Brain/pathology , ErbB Receptors/genetics
6.
J Neurosurg ; 138(3): 610-620, 2023 03 01.
Article in English | MEDLINE | ID: mdl-35907197

ABSTRACT

OBJECTIVE: Because of the aggressive nature of glioblastoma, patients with unresected disease are encouraged to begin radiotherapy within approximately 1 month after craniotomy. The aim of this study was to investigate the potential association between time interval from biopsy to radiotherapy with overall survival in patients with unresected glioblastoma. METHODS: Patients with unresected glioblastoma diagnosed between 2010 and 2014 who received adjuvant radiotherapy and concurrent chemotherapy were identified in the National Cancer Database. Demographic and clinical data were compared using chi-square and Wilcoxon rank-sum tests. Survival was analyzed using the Kaplan-Meier method and Cox proportional hazards regression modeling. RESULTS: Among 3456 patients with unresected glioblastoma, initiation of radiotherapy within 3 weeks of biopsy was associated with a higher hazard of death compared with later initiation of radiotherapy. After excluding patients who received radiotherapy within 3 weeks of biopsy to minimize the effects of confounders associated with short time intervals from biopsy to radiotherapy, the median interval from biopsy to radiotherapy was 32 days (IQR 27-39 days). Overall, 1782 (66.82%) patients started radiotherapy within 5 weeks of biopsy, and 885 (33.18%) patients started radiotherapy beyond 5 weeks of biopsy. On multivariable analysis, there was no significant difference in overall survival between these two groups (HR 0.96, 95% CI 0.88-1.50; p = 0.374). CONCLUSIONS: In patients with unresected glioblastoma, a longer time interval from biopsy to radiotherapy does not appear to be associated with worse overall survival. However, external validation of these findings is necessary given that selection bias is a significant limitation of this study.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Radiotherapy, Adjuvant , Biopsy , Brain Neoplasms/surgery , Proportional Hazards Models
7.
Cancer J ; 28(5): 401-406, 2022.
Article in English | MEDLINE | ID: mdl-36165729

ABSTRACT

ABSTRACT: Despite the development of new treatment paradigms and improved biologic understanding of head and neck squamous cell carcinoma (HNSCC), therapeutic resistance remains a substantial problem, and novel treatment approaches are needed. Stimulator of interferon genes (STING) is a critical regulator of the antitumor response through regulation of both immune-dependent and tumor-intrinsic mechanisms. As such, the STING pathway has emerged as a rational pharmacologic target leading to the development of multiple STING agonists. These compounds have impressive preclinical efficacy as single agents and with PD-1 (programmed death-1) axis agents. However, clinical evaluation in this context has yet to show substantial efficacy. In contrast to monotherapy approaches, activation of STING in combination with DNA-damaging agents has been shown to enhance the effect of these agents in preclinical models and represents a promising approach to improve outcomes in patients with HNSCC. In this review, we will discuss the preclinical and clinical data supporting the use of STING agonists and highlight potential avenues of exploration to unlock the potential of these agents in HNSCC.


Subject(s)
Biological Products , Head and Neck Neoplasms , Cell Line, Tumor , Head and Neck Neoplasms/drug therapy , Humans , Interferons , Membrane Proteins/metabolism , Programmed Cell Death 1 Receptor , Squamous Cell Carcinoma of Head and Neck/drug therapy
8.
Adv Radiat Oncol ; 7(4): 100949, 2022.
Article in English | MEDLINE | ID: mdl-35521071

ABSTRACT

Purpose: Whole brain radiation therapy (WBRT) is often used as an effective treatment for patients with brain metastasis, although it is also known to have deleterious cognitive effects. Multiple trials have identified strategies to help mitigate neurocognitive decline after WBRT, although there may be barriers to integrating these techniques into routine clinical practice. The aim of this study was to characterize national practice patterns related to neurocognitive preservation strategies used during WBRT. Methods and Materials: We conducted an online survey of all American Society for Radiation Oncology-registered radiation oncologists (ROs), excluding trainees, regarding their practice patterns and attitudes toward employing memantine and hippocampal avoidance whole brain radiation therapy (HA-WBRT). Pearson χ2 tests for categorical variables or Student t tests for continuous variables were used to assess associations between provider characteristics and prescribing of either memantine or HA. All statistical tests were 2-sided and a P value <.05 was considered statistically significant. Results: Among 4408 ROs invited to participate, 417 (9.5%) completed the survey. Among respondents, 79.6% reported having offered memantine, 72.7% HA-WBRT, and 63.1% both for any of their patients undergoing WBRT. Common reasons for not offering memantine included limitations of current evidence (35.3%) and concerns about adverse effects (22.4%). Common reasons for not offering HA-WBRT included resource-intensive treatment planning and treatment delay (43.9%) and concern about obtaining prior authorization (38.6%). ROs with fewer years in practice (mean 15.7 vs 23.4 years) were more likely to prescribe memantine (P < .001), whereas HA was more likely prescribed by central nervous system specialists (P < .001) and ROs in academic settings (P = .04). Conclusions: Our survey suggests that the majority of respondents offer approaches for neurocognitive preservation during WBRT for their patients. Further efforts are needed to broaden education and reduce barriers among ROs to improve implementation of neurocognitive-sparing techniques in patients undergoing WBRT.

9.
mBio ; 13(2): e0298321, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35285699

ABSTRACT

Individuals with metabolic dysregulation of cellular glycosylation often experience severe influenza disease, with a poor immune response to the virus and low vaccine efficacy. Here, we investigate the consequences of aberrant cellular glycosylation for the glycome and the biology of influenza virus. We transiently induced aberrant N-linked glycosylation in cultured cells with an oligosaccharyltransferase inhibitor, NGI-1. Cells treated with NGI-1 produced morphologically unaltered viable influenza virus with sequence-neutral glycosylation changes (primarily reduced site occupancy) in the hemagglutinin and neuraminidase proteins. Hemagglutinin with reduced glycan occupancy required a higher concentration of surfactant protein D (an important innate immunity respiratory tract collectin) for inhibition compared to that with normal glycan occupancy. Immunization of mice with NGI-1-treated virus significantly reduced antihemagglutinin and antineuraminidase titers of total serum antibody and reduced hemagglutinin protective antibody responses. Our data suggest that aberrant cellular glycosylation may increase the risk of severe influenza as a result of the increased ability of glycome-modified influenza viruses to evade the immune response. IMPORTANCE People with disorders such as cancer, autoimmune disease, diabetes, or obesity often have metabolic dysregulation of cellular glycosylation and also have more severe influenza disease, a reduced immune response to the virus, and reduced vaccine efficacy. Since influenza viruses that infect such people do not show consistent genomic variations, it is generally assumed that the altered biology is mainly related to host factors. However, since host cells are responsible for glycosylation of influenza virus hemagglutinin and neuraminidase, and glycosylation is important for interactions of these proteins with the immune system, the viruses may have functional differences that are not reflected by their genomic sequence. Here, we show that imbalanced cellular glycosylation can modify the viral glycome without genomic changes, leading to reduced innate and adaptive host immune responses to infection. Our findings link metabolic dysregulation of host glycosylation to increased risk of severe influenza and reduced influenza virus vaccine efficacy.


Subject(s)
Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Orthomyxoviridae , Animals , Glycosylation , Hemagglutinins/genetics , Humans , Immunity, Innate , Mice , Neuraminidase/genetics , Polysaccharides
10.
Cancer Lett ; 526: 346-351, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34780851

ABSTRACT

The progression of cancer is an evolutionary process that is challenging to assess between sampling timepoints. However, investigation of cancer evolution over specific time periods is crucial to the elucidation of key events such as the acquisition of therapeutic resistance and subsequent fatal metastatic spread of therapy-resistant cell populations. Here we apply mutational signature analyses within clinically annotated cancer chronograms to detect and describe the shifting mutational processes caused by both endogenous (e.g. mutator gene mutation) and exogenous (e.g. mutagenic therapeutics) factors between tumor sampling timepoints. In one patient, we find that cisplatin therapy can introduce mutations that confer genetic resistance to subsequent targeted therapy with Erlotinib. In another patient, we trace detection of defective mismatch-repair associated mutational signature SBS3 to the emergence of known driver mutation CTNNB1 S37C. In both of these patients, metastatic lineages emerged from a single ancestral lineage that arose during therapy-a finding that argues for the consideration of local consolidative therapy over other therapeutic approaches in EGFR-positive non-small cell lung cancer. Broadly, these results demonstrate the utility of phylogenetic analysis that incorporates clinical time course and mutational signature deconvolution to inform therapeutic decision making and retrospective assessment of disease etiology.


Subject(s)
Adenocarcinoma of Lung/therapy , Lung Neoplasms/therapy , Adenocarcinoma of Lung/genetics , DNA Mutational Analysis/methods , ErbB Receptors/metabolism , Humans , Lung Neoplasms/genetics
11.
J Immunother Cancer ; 9(10)2021 10.
Article in English | MEDLINE | ID: mdl-34670827

ABSTRACT

Despite unique genetic alterations within brain metastases (BrMs) and an immunologically distinct surrounding microenvironment, the composition and functional properties of tumor-infiltrating lymphocytes within BrM remain largely unexplored. In particular, the expression of coinhibitory receptors, such as programmed cell death 1 (PD-1), T cell immunoglobulin mucin receptor 3 (TIM-3), and lymphocyte activation gene 3 (LAG-3), within BrMs is unknown. Using multiplexed quantitative immunofluorescence (QIF), this study evaluates the localized expression of PD-L1, level and functional profile of major T cell subsets, and coinhibitory receptors within lung cancer-associated BrMs and primary lung tumors. Clinicopathologically annotated samples from 95 patients with lung cancer between 2002 and 2015 were represented in a tissue microarray format. Spatially resolved and multiplexed QIF was used to evaluate PD-L1 protein, phenotype markers for major T cell subsets (CD3, CD4, CD8, and FOXP3), cell-localized activation and proliferation markers (granzyme B and Ki67), and coinhibitory receptors (PD-1, LAG-3, and TIM-3). The signal for each marker was measured in marker-selected tissue compartments, and associations between marker levels, tumor location, and major clinicopathological variables were studied. In total, 41 primary lung tumors and 65 BrMs were analyzed, including paired samples from 11 patients. Levels of tumor PD-L1 expression were comparable between BrMs and primary lung tumors. BrMs had significantly lower levels of all T cell subsets relative to primary lung tumors, and T cells in BrMs displayed lower levels of granzyme B than primary lesions. PD-1, TIM-3, and LAG-3 levels in CD3+ T-cells were also significantly lower in BrMs. Marker expression in patients with paired samples from BrMs and primary lung tumors showed comparable results. High CD3+ T-cells, as well as high levels of TIM-3 and LAG-3 in CD3+ T-cells, were associated with longer overall survival in BrMs but not primary lung tumors. Lung cancer-associated BrMs display lower T cell infiltration, markers of cytolytic function, and immune regulatory signals than primary lung tumors. Despite these differences, high TIM-3 and high LAG-3 expressions in CD3+ T-cells were associated with longer survival. These features are accompanied by comparable levels of PD-L1 protein expression compared with primary lung tumors. These results highlight unique aspects of the tumor immune microenvironment within the brain and provide further support for intracranially focused therapies.


Subject(s)
Biomarkers, Tumor/metabolism , Brain Neoplasms/etiology , Lung Neoplasms/complications , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes/immunology , Brain Neoplasms/pathology , Female , Humans , Male , Retrospective Studies , Tumor Microenvironment
12.
Am J Nucl Med Mol Imaging ; 11(2): 143-153, 2021.
Article in English | MEDLINE | ID: mdl-34079641

ABSTRACT

BACKGROUND: [11C]-Erlotinib is a radiolabeled analogue of a tyrosine kinase inhibitor used to treat non-small cell lung cancer (NSCLC) which expresses specific kinase domain mutations of the epidermal growth factor receptor (EGFR). In this study, 10 subjects with NSCLC and assorted EGFR mutation status underwent a dynamic, multi-bed positron emission tomography (PET) scan using [11C]-erlotinib. Data were analyzed using a variety of quantitative techniques common in PET (graphical methods, kinetic models, and uptake value-based endpoints). Our primary goal was to determine the most reliable imaging endpoint given the need for maintaining minimal patient burden and recognizing the advantage of simple calculations in future trials. RESULTS: Standard uptake values (a semi-quantitative endpoint) were well correlated with both binding potential and volume of distribution (fully quantitative endpoints). Normalized tracer uptake was found to stabilize approximately 60 minutes post tracer injection. Conclusions: The kinetic properties of [11C]-erlotinib varied greatly across subjects. Our novel scanning protocol produced an important dataset which highlights the great heterogeneity of NSCLC and its apparent impact on [11C]-erlotinib kinetics. A lack of correlation between EGFR mutational status and quantitative endpoints appears to be due to disease heterogeneity and low tracer uptake. The most reliable fits of the dynamic data were based on the one-tissue compartmental model which were well correlated with mean SUV. Due to this correlation and good stability at late-time, SUV seems sufficiently well-suited to quantitative imaging of NSCLC lesions in the whole body with [11C]-erlotinib.

13.
Nat Commun ; 12(1): 2327, 2021 04 19.
Article in English | MEDLINE | ID: mdl-33875663

ABSTRACT

Resistance to DNA-damaging agents is a significant cause of treatment failure and poor outcomes in oncology. To identify unrecognized regulators of cell survival we performed a whole-genome CRISPR-Cas9 screen using treatment with ionizing radiation as a selective pressure, and identified STING (stimulator of interferon genes) as an intrinsic regulator of tumor cell survival. We show that STING regulates a transcriptional program that controls the generation of reactive oxygen species (ROS), and that STING loss alters ROS homeostasis to reduce DNA damage and to cause therapeutic resistance. In agreement with these data, analysis of tumors from head and neck squamous cell carcinoma patient specimens show that low STING expression is associated with worse outcomes. We also demonstrate that pharmacologic activation of STING enhances the effects of ionizing radiation in vivo, providing a rationale for therapeutic combinations of STING agonists and DNA-damaging agents. These results highlight a role for STING that is beyond its canonical function in cyclic dinucleotide and DNA damage sensing, and identify STING as a regulator of cellular ROS homeostasis and tumor cell susceptibility to reactive oxygen dependent, DNA damaging agents.


Subject(s)
Gene Expression Regulation, Neoplastic , Membrane Proteins/genetics , Reactive Oxygen Species/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Animals , Cell Line, Tumor , DNA Damage , Female , HEK293 Cells , Humans , Kaplan-Meier Estimate , Mice, Inbred C57BL , Mice, Nude , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Xenograft Model Antitumor Assays/methods
14.
Sci Adv ; 7(3)2021 01.
Article in English | MEDLINE | ID: mdl-33523898

ABSTRACT

Asparagine (N)-linked glycosylation is required for endoplasmic reticulum (ER) homeostasis, but how this co- and posttranslational modification is maintained during ER stress is unknown. Here, we introduce a fluorescence-based strategy to detect aberrant N-glycosylation in individual cells and identify a regulatory role for the heterotetrameric translocon-associated protein (TRAP) complex. Unexpectedly, cells with knockout of SSR3 or SSR4 subunits restore N-glycosylation over time concurrent with a diminished ER stress transcriptional signature. Activation of ER stress or silencing of the ER chaperone BiP exacerbates or rescues the glycosylation defects, respectively, indicating that SSR3 and SSR4 enable N-glycosylation during ER stress. Protein levels of the SSR3 subunit are ER stress and UBE2J1 dependent, revealing a mechanism that coordinates upstream N-glycosylation proficiency with downstream ER-associated degradation and proteostasis. The fidelity of N-glycosylation is not static in both nontransformed and tumor cells, and the TRAP complex regulates ER glycoprotein quality control under conditions of stress.

15.
J Neurosurg ; 135(3): 835-844, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33276341

ABSTRACT

OBJECTIVE: The association of seizures with meningiomas is poorly understood. Moreover, any relationship between seizures and the underlying meningioma genomic subgroup has not been studied. Herein, the authors report on their experience with identifying clinical and genomic factors associated with preoperative and postoperative seizure presentation in meningioma patients. METHODS: Clinical and genomic sequencing data on 394 patients surgically treated for meningioma at Yale New Haven Hospital were reviewed. Correlations between clinical, histological, or genomic variables and the occurrence of preoperative and postoperative seizures were analyzed. Logistic regression models were developed for assessing multiple risk factors for pre- and postoperative seizures. Mediation analyses were also conducted to investigate the causal pathways between genomic subgroups and seizures. RESULTS: Seventeen percent of the cohort had presented with preoperative seizures. In a univariate analysis, patients with preoperative seizures were more likely to have tumors with a somatic NF2 mutation (p = 0.020), WHO grade II or III tumor (p = 0.029), atypical histology (p = 0.004), edema (p < 0.001), brain invasion (p = 0.009), and worse progression-free survival (HR 2.68, 95% CI 1.30-5.50). In a multivariate analysis, edema (OR 3.11, 95% CI 1.46-6.65, p = 0.003) and atypical histology (OR 2.00, 95% CI 1.03-3.90, p = 0.041) were positive predictors of preoperative seizures, while genomic subgroup was not, such that the effect of an NF2 mutation was indirectly mediated through atypical histology and edema (p = 0.012). Seizure freedom was achieved in 83.3% of the cohort, and only 20.8% of the seizure-free patients, who were more likely to have undergone gross-total resection (p = 0.031), were able to discontinue antiepileptic drug use postoperatively. Preoperative seizures (OR 3.54, 95% CI 1.37-9.12, p = 0.009), recurrent tumors (OR 2.89, 95% CI 1.08-7.74, p = 0.035), and tumors requiring postoperative radiation (OR 2.82, 95% CI 1.09-7.33, p = 0.033) were significant predictors of postoperative seizures in a multivariate analysis. CONCLUSIONS: Seizures are relatively common at meningioma presentation. While NF2-mutated tumors are significantly associated with preoperative seizures, the association appears to be mediated through edema and atypical histology. Patients who undergo radiation and/or have a recurrence are at risk for postoperative seizures, regardless of the extent of resection. Preoperative seizures may indeed portend a more potentially aggressive molecular entity and challenging clinical course with a higher risk of recurrence.

16.
Radiother Oncol ; 142: 168-174, 2020 01.
Article in English | MEDLINE | ID: mdl-31526671

ABSTRACT

INTRODUCTION: Brain metastasis velocity (BMV) is a prognostic metric that describes the recurrence rate of new brain metastases after initial treatment with radiosurgery (SRS). We have previously risk stratified patients into high, intermediate, and low-risk BMV groups, which correlates with overall survival (OS). We sought to externally validate BMV in a multi-institutional setting. METHODS: Patients from nine academic centers were treated with upfront SRS; the validation cohort consisted of data from eight institutions not previously used to define BMV. Patients were classified by BMV into low (<4 BMV), intermediate (4-13 BMV), and high-risk groups (>13 BMV). Time-to-event outcomes were estimated using the Kaplan-Meier method. Cox proportional hazards methods were used to estimate the effect of BMV and salvage modality on OS. RESULTS: Of 2829 patients, 2092 patients were included in the validation dataset. Of these, 921 (44.0%) experienced distant brain failure (DBF). Median OS from initial SRS was 11.2 mo. Median OS for BMV < 4, BMV 4-13, and BMV > 13 were 12.5 mo, 7.0 mo, and 4.6 mo (p < 0.0001). After multivariate regression modeling, melanoma histology (ß: 10.10, SE: 1.89, p < 0.0001) and number of initial brain metastases (ß: 1.52, SE: 0.34, p < 0.0001) remained predictive of BMV (adjusted R2 = 0.06). CONCLUSIONS: This multi-institutional dataset validates BMV as a predictor of OS following initial SRS. BMV is being utilized in upcoming multi-institutional randomized controlled trials as a stratification variable for salvage whole brain radiation versus salvage SRS after DBF.


Subject(s)
Brain Neoplasms/radiotherapy , Brain Neoplasms/secondary , Radiosurgery/methods , Aged , Female , Humans , Male , Melanoma/pathology , Middle Aged , Neoplasm Recurrence, Local/pathology , Neoplasms/pathology , Neoplasms/radiotherapy , Prognosis , Retrospective Studies , Risk Factors , Salvage Therapy/methods
17.
Mol Cancer Ther ; 18(11): 2124-2134, 2019 11.
Article in English | MEDLINE | ID: mdl-31387891

ABSTRACT

EGFR signaling confers resistance to radiotherapy and is a validated target in head and neck squamous cell carcinoma (HNSCC). The inhibition of EGFR in combination with radiotherapy improves local control and overall survival in these patients; however, therapeutic resistance limits the efficacy of this approach. We therefore sought to identify cellular mechanisms that cause resistance to EGFR inhibition and radiotherapy in HNSCC. Though clonal isolation of carcinoma cells exposed to increasing concentrations of cetuximab, we found that resistant cells upregulate prosurvival ErbB3 and AKT signaling. Using EFM-19 cells and confirmatory analysis of protein levels, we demonstrate that cetuximab resistance is characterized by enhanced neuregulin expression identifying a novel adaptive mechanism of therapeutic resistance. Inhibition of this autocrine loop with CDX-3379 (an ErbB3 specific antibody) was sufficient to block ErbB3/AKT signaling in cetuximab resistant cells. The combination of CDX-3379 and cetuximab reduced proliferation and survival after radiotherapy in several HNSCC cell lines. These in vitro findings were confirmed in xenograft tumor growth experiments including an approach using growth factor-supplemented Matrigel. In vivo, the delivery of EGFR and ErbB3 antibodies significantly reduced tumor growth in cetuximab-resistant FaDu and CAL27 xenografts. In summary, this work demonstrates that autocrine NRG ligand secretion is a mechanism for therapeutic resistance to cetuximab and radiotherapy. This cross-resistance to both therapeutic modalities identifies NRG as an actionable therapeutic target for improving treatment regimens in HNSCC.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Cetuximab/administration & dosage , Drug Resistance, Neoplasm , Head and Neck Neoplasms/drug therapy , Signal Transduction/drug effects , Squamous Cell Carcinoma of Head and Neck/drug therapy , Animals , Antibodies, Monoclonal/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cetuximab/pharmacology , Drug Resistance, Neoplasm/drug effects , Female , Head and Neck Neoplasms/metabolism , Humans , Mice , Neuregulins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-3/antagonists & inhibitors , Receptor, ErbB-3/metabolism , Squamous Cell Carcinoma of Head and Neck/metabolism , Up-Regulation , Xenograft Model Antitumor Assays
18.
Anticancer Res ; 39(6): 2911-2918, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31177129

ABSTRACT

BACKGROUND: RTOG 9802 identified a cohort of patients with age less than 40 years and undergoing gross total resection as having low-risk, low-grade glioma (LR-LGG). European Organization for Research and Treatment of Cancer studies have demonstrated additional prognostic features in this group. The aim of this study was to analyze clinical factors associated with overall survival (OS), identify a potentially higher risk group within LR-LGG, and investigate patterns of care for adjuvant therapy. MATERIALS AND METHODS: Patients with LR-LGG diagnosed between 2010 to 2013 were identified in the National Cancer Database. Kaplan-Meier method was used to analyze OS. Propensity score matching and multivariate analysis were utilized to adjust for differences in cohorts. RESULTS: A total of 1,032 patients with LR-LGG were identified. Histological breakdown was 42.0% astrocytoma, 33.2% oligodendroglioma, and 25.8% mixed. Median follow-up was 3.9 years; median pre-operative tumor size was 4.0 cm. Overall, 834 (80.8%) underwent observation and 198 (19.2%) received adjuvant therapy. Tumor size >5 cm predicted for receipt of adjuvant therapy on regression analyses (OR=2.02, p=0.001). On multivariate analysis, tumor size >5 cm (hazard ratio=1.95) and non-oligodendroglioma histology (hazard ratio=2.50) were associated with inferior OS (both p<0.05). For patients with both poor prognostic features (a subset we consider "intermediate-risk"), 5-year OS was 78.4%, compared to 94.1% for all other low-risk patients (p<0.001). After propensity score matching, the intermediate-risk group continued to be associated with worse 5-year OS: 80.5% vs. 94.0%, p=0.004. CONCLUSION: Due to inferior OS for patients with LR-LGG with >5 cm, non-oligodendroglioma tumors, we propose an 'intermediate-risk' clinical classification for this subset.


Subject(s)
Astrocytoma/pathology , Brain Neoplasms/pathology , Glioma/pathology , Oligodendroglioma/pathology , Risk Assessment/methods , Adult , Databases, Factual , Female , Humans , Male , Neoplasm Grading , Prognosis , Propensity Score , Risk Factors , Survival Analysis , Tumor Burden , Young Adult
19.
Int J Radiat Oncol Biol Phys ; 104(5): 1091-1098, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30959122

ABSTRACT

PURPOSE: Several studies evaluating stereotactic radiosurgery (SRS) for patients with >4 brain metastases (BM) demonstrated similar outcomes after treatment of 1, 2 to 4, and 5 to 15 BM; others found clinically significant survival decrements in the latter group. In this review of 8 academic centers, we compared outcomes of patients undergoing initial SRS for 1, 2 to 4, and 5 to 15 BM. METHODS AND MATERIALS: A total of 2089 patients treated with initial SRS for BM were included. Overall survival (OS) was estimated using the Kaplan-Meier method and compared using the log-rank test. Patient and disease characteristics were evaluated for association with OS and cumulative incidence of distant brain failure (DBF) using stepwise multivariable Cox proportional hazards and competing risk regression modeling. RESULTS: In this series, 989 (47%) patients had 1 metastasis, 882 (42%) had 2 to 4 metastases, and 212 (10%) had 5 to 15 metastases treated. Median OS for the 1, 2 to 4, and 5 to 15 BM groups was 14.6, 9.5, and 7.5 months, respectively (log-rank P < .01). Univariate and multivariable analyses revealed no difference in survival between 2 to 4 and 5 to 15 BM. DBF at 1 year was 30%, 41%, and 50%, respectively (Gray's P < .01). Two-year cumulative incidence of salvage SRS decreased with increasing number of BM (1: 21% vs 2-4: 19% vs 5-15: 13%; P < .01), but no difference in salvage whole brain radiation therapy was observed (1: 12% vs 2-4: 15% vs 5-15: 16%, P = .10). At the time of DBF, median brain metastasis velocity was 3.9, 6.1, and 11.7 new metastases per year in the 1, 2 to 4, and 5 to 15 BM groups, respectively (P < .01). CONCLUSIONS: Patients treated with initial SRS for 5 to 15 BM experienced survival similar to that in patients with 2 to 4 BM. Lower rates of salvage SRS were observed in the 5 to 15 BM group, with no difference in rates of salvage whole brain radiation therapy.


Subject(s)
Brain Neoplasms/radiotherapy , Brain Neoplasms/secondary , Radiosurgery/methods , Aged , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Cranial Irradiation/adverse effects , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Proportional Hazards Models , Radiosurgery/mortality , Salvage Therapy/statistics & numerical data , Survival Analysis , Treatment Outcome
20.
FASEB J ; 33(6): 6801-6812, 2019 06.
Article in English | MEDLINE | ID: mdl-30811219

ABSTRACT

Herpes simplex virus 1 (HSV-1) is a contagious neurotropic herpesvirus responsible for oral lesions and herpesviral encephalitis. The HSV-1 envelope contains N-glycosylated proteins involved in infection and that are candidate drug targets. NGI-1 is a small-molecule inhibitor of oligosaccharyltransferase (OST) complexes STT3A-OST and STT3B-OST, which catalyze cotranslational and post-translational N-glycosylation, respectively. Because host OSTs attach HSV-1 glycans, NGI-1 might have anti-HSV-1 activity. We evaluated HSV-1 function using NGI-1 and human embryonic kidney 293 knockout lines for OST isoform-specific catalytic and accessory subunits. N-glycosylation of 2 representative envelope proteins (gC and gD) was primarily dependent upon STT3A-OST, but to a large extent replaceable by STT3B-OST. Knockouts impairing STT3A- or STT3B-OST activity, by themselves, did not appreciably affect HSV-1 function (plaque-forming units, normalized to viral particles measured by unglycosylated capsid protein VP5 content). However, with cells lacking STT3B-OST activity (missing the catalytic subunit STT3B or the oxidoreductase subunits magnesium transporter 1/tumor suppressor candidate 3) and thus solely dependent upon STT3A-OST for N-glycosylation, NGI-1 treatment resulted in HSV-1 having cell type-dependent dysfunction (affecting infectivity with Vero cells much more than with the 293 lines). Ablation of post-translational N-glycosylation can therefore make HSV-1 infectivity, and possibly masking of immunogenic peptide epitopes by glycans, highly sensitive to pharmacological inhibition of cotranslational N-glycosylation.-Lu, H., Cherepanova, N. A., Gilmore, R., Contessa, J. N., Lehrman, M. A. Targeting STT3A-oligosaccharyltransferase with NGI-1 causes herpes simplex virus 1 dysfunction.


Subject(s)
Benzamides/pharmacology , Herpes Simplex/drug therapy , Herpesvirus 1, Human/drug effects , Hexosyltransferases/antagonists & inhibitors , Membrane Proteins/antagonists & inhibitors , Protein Processing, Post-Translational/drug effects , Sulfonamides/pharmacology , Animals , Chlorocebus aethiops , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Glycosylation , HEK293 Cells , Herpes Simplex/metabolism , Herpes Simplex/virology , Humans , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...