Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Acta Trop ; 250: 107088, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043673

ABSTRACT

St. Louis encephalitis virus (SLEV) is endemic in the Americas and its transmission networks involve Culex mosquitoes and avian species. In 2015, a human encephalitis outbreak took place in Arizona and California, indicating the re-emergence of this pathogen in the US. Viral strains isolated in that outbreak belong to genotype III SLEV previously detected only in South America. In this study, genotype III SLEV was detected in mosquitoes collected in Mar Chiquita Lagoon (Córdoba, Argentina), an overwintering site for numerous migratory bird species. The genotype III SLEV sequence detected in this site shares the closest known ancestor with those introduced in Arizona in 2015. Our results highlight the potential significance of wetlands as key sites for arbovirus maintenance and emergence.


Subject(s)
Culicidae , Encephalitis, St. Louis , Animals , Humans , United States , Encephalitis Virus, St. Louis/genetics , Encephalitis, St. Louis/epidemiology , Argentina/epidemiology , Wetlands , Birds , Genotype
2.
Trans R Soc Trop Med Hyg ; 117(1): 61-63, 2023 01 03.
Article in English | MEDLINE | ID: mdl-35927790

ABSTRACT

Saint Louis encephalitis virus (SLEV), West Nile virus (WNV) and Ilheus virus (ILHV) are flaviviruses maintained by enzootic transmission networks between mosquitoes and birds. They have been detected in South America, with no records for Paraguay. We detected the presence of neutralizing antibodies for SLEV, WNV and ILHV in free-ranging birds collected in Paraguay (2016-2018). Four positive samples were detected in resident birds: one SLEV (rufous-bellied thrush), one WNV (barred antshrike) and two ILHV (white-tipped dove and shiny cowbird). These results bring new information about enzootic activity of flaviviruses in Paraguay.


Subject(s)
Flavivirus , West Nile Fever , West Nile virus , Humans , Animals , Antibodies, Neutralizing , Paraguay , Birds , Encephalitis Virus, St. Louis , Antibodies, Viral
3.
Phytomedicine ; 106: 154424, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36126544

ABSTRACT

BACKGROUND: Dengue virus (DENV) is considered one of the most important pathogens in the world causing 390 million infections each year. Currently, the development of vaccines against DENV presents some shortcomings and there is no antiviral therapy available for its infection. An important challenge is that both treatments and vaccines must be effective against all four DENV serotypes. Nordihydroguaiaretic acid (NDGA), isolated from Larrea divaricata Cav. (Zygophyllaceae) has shown a significant inhibitory effect on a broad spectrum of viruses, including DENV serotypes 2 and 4. PURPOSE: We evaluated the in vitro virucidal and antiviral activity of NDGA on DENV serotype 1 (DENV1), including the study of its mechanism of action, to provide more evidence on its antiviral activity. METHODS: The viability of viral particles was quantified by the plaque-forming unit reduction method. NDGA effects on DENV1 genome and viral proteins were evaluated by qPCR and immunofluorescence, respectively. Lysosomotropic activity was assayed using acridine orange and neutral red dyes. RESULTS: NDGA showed in vitro virucidal and antiviral activity against DENV1. The antiviral effect would be effective within the first 2 h after viral internalization, when the uncoating process takes place. In addition, we determined by qPCR that NDGA decreases the amount of intracellular RNA of DENV1 and, by immunofluorescence, the number of cells infected. These results indicate that the antiviral effect of NDGA would have an intracellular mechanism of action, which is consistent with its ability to be incorporated into host cells. Considering the inhibitory activity of NDGA on the cellular lipid metabolism, we compared the antiviral effect of two inhibitors acting on two different pathways of this type of metabolism: 1) resveratrol that inhibits the sterol regulatory element of binding proteins, and 2) caffeic acid that inhibits the 5-lipoxygenase (5-LOX) enzyme. Only caffeic acid produced an inhibitory effect on DENV1 infection. We studied the lysosomotropic activity of NDGA on host cells and found, for the first time, that this compound inhibited the acidification of cell vesicles which would prevent DENV1 uncoating process. CONCLUSION: The present work contributes to the knowledge of NDGA activity on DENV. We describe its activity on DENV1, a serotype different to those that have been already reported. Moreover, we provide evidence on which stage/s of the viral replication cycle NDGA exerts its effects. We suggest that the mechanism of action of NDGA on DENV1 is related to its lysosomotropic effect, which inhibits the viral uncoating process.


Subject(s)
Dengue Virus , Acridine Orange/pharmacology , Antiviral Agents/pharmacology , Arachidonate 5-Lipoxygenase/genetics , Caffeic Acids , Coloring Agents/pharmacology , Dengue Virus/physiology , Masoprocol/pharmacology , Neutral Red/pharmacology , RNA , Resveratrol/pharmacology , Serogroup , Sterols/pharmacology , Viral Proteins , Virus Replication
4.
Sci Rep ; 12(1): 14556, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008558

ABSTRACT

Pixuna virus (PIXV) and Río Negro virus (RNV) are mosquito-borne alphaviruses belonging to the Venezuelan Equine Encephalitis (VEE) complex, which includes pathogenic epizootic and enzootic subtypes responsible for life-threatening diseases in equines. Considering that the first steps in viral infection are crucial for the efficient production of new progeny, the aim of this study was to elucidate the early events of the replication cycle of these two viruses. To this end, we used chemical inhibitors and the expression of dominant-negative constructs to study the dependence of clathrin and endosomal pH on PIXV and RNV internalization mechanisms. We demonstrated that both viruses are internalized primarily via clathrin-mediated endocytosis, where the low pH in endosomes is crucial for viral replication. Contributing knowledge regarding the entry route of VEE complex members is important to understand the pathogenesis of these viruses and also to develop new antiviral strategies.


Subject(s)
Alphavirus , Encephalitis Virus, Venezuelan Equine , Encephalomyelitis, Venezuelan Equine , Animals , Clathrin , Endocytosis , Horses , Hydrogen-Ion Concentration
5.
Trans R Soc Trop Med Hyg ; 116(1): 34-42, 2022 01 19.
Article in English | MEDLINE | ID: mdl-33739412

ABSTRACT

BACKGROUND: Few studies about the evolutionary history of the hepatitis E virus (HEV) have been conducted. The aim of our work was to investigate and make inferences about the origin and routes of dispersion of HEV-3 in Argentina. METHODS: Phylogenetic, coalescent and phylogeographic analyses were performed using a 322-bp ORF2 genomic fragment of all HEV-3 sequences with known date and place of isolation published at GenBank until May 2018 (n=926), including 16 Argentinian sequences (isolated from pigs, water and humans). RESULTS: Phylogenetic analysis revealed two clades within HEV-3: abchij and efg. All Argentinian samples were grouped intermingled within clade 3abchij. The coalescent analysis showed that the most recent common ancestor for the clade 3abchij would have existed around the year 1967 (95% highest posterior density (HPD): 1963-1970). The estimated substitution rate was 1.01×10-2 (95%HPD: 9.3×10-3-1.09×10-2) substitutions/site/y, comparable with the rate previously described. The phylogeographic approach revealed a correspondence between phylogeny and place of origin for Argentinian samples, suggesting many HEV introductions in the country, probably from Europe and Japan. CONCLUSIONS: This is the first evolutionary inference of HEV-3 that includes Argentinian strains, showing the circulation of many HEV-3 subtypes, obtained from different sources and places, with recent diversification processes. ACCESSION NUMBERS: [KX812460], [KX812461], [KX812462], [KX812465], [KX812466], [KX812467], [KX812468], [KX812469].


Subject(s)
Hepatitis E virus , Hepatitis E , Animals , Argentina/epidemiology , Genotype , Hepatitis E/epidemiology , Humans , Phylogeny , Phylogeography , Swine
6.
Mem. Inst. Invest. Cienc. Salud (Impr.) ; 19(2)ago. 2021. tab, ilus
Article in Spanish | LILACS, BDNPAR | ID: biblio-1337801

ABSTRACT

Los Flavivirus constituyen virus transmitidos por artrópodos, principalmente mosquitos. Pueden producir enfermedades en humanos y animales, también incluyen virus específicos de insectos que solo infectan y se replican en los insectos, no así en vertebrados. En Paraguay los virus dengue, fiebre amarilla y Zika fueron detectados en infecciones humanas, pero los estudios de flavivirus en mosquitos son aún escasos. Por ello, el objetivo del presente estudio fue implementar un sistema de detección de flavivirus en mosquitos en el IICS-UNA. Primero, se organizaron capacitaciones en colecta, preparación de pools y procesamiento por técnicas de RT-PCRs convencionales realizadas por expertos internacionales a profesionales locales (bioquímicos y biólogos). Además, se implementaron planillas de registro de datos y de control de transporte de muestras de los lugares de colectas hasta el IICS-UNA. Se prepararon en total 201 pools de 1 a 35 mosquitos cada uno agrupados por especie, localidad, entre otros criterios. Para asegurar la integridad del RNA extraído se realizó la detección de un control interno (Actina-1), siendo todos los pools positivos para el mismo, 91/201 pools fueron positivos para flavivirus. Se realizó la secuenciación de 19/91 pools positivos para flavivirus identificándose flavivirus de insectos (detectándose principalmente Culex Flavivirus, cell fusing agents Flavivirus y Kamiti river virus), evidenciando la elevada distribución de estos virus. Estos resultados demuestran que fue factible implementar el sistema de detección de flavivirus en mosquitos, lo cual podría contribuir a fortalecer la vigilancia y control de estas virosis, así como el conocimiento sobre la importancia ecológica de flavivirus de insectos


Flaviviruses are viruses transmitted by arthropods, mainly mosquitoes. They can cause diseases in humans and animals, they also include specific insect viruses that only infect and replicate in insects, not in vertebrates. In Paraguay, dengue, yellow fever, and Zika viruses were detected in human infections, but studies of flaviviruses in mosquitoes are still scarce. Therefore, the objective of the present study was the implementation of a flavivirus detection system in mosquitoes at IICS-UNA. First, trainings on collection, pool preparation and processing by conventional RT-PCR techniques were organized by international experts for local professionals (biochemists and biologists). In addition, data log sheets and sample transport control forms from the collection sites to the IICS were implemented. A total of 201 pools of 1 to 35 mosquitoes were prepared, each grouped by species, locality, among others. To ensure the integrity of the extracted RNA, an internal control (Actin-1) detection was performed, all pools being positive for it; 91/201 pools were positive for flaviviruses. The sequencing of 19/91 pools positive for flavivirus was carried out, identifying flavivirus in all cases of insects (mainly detecting Culex Flavivirus, cell fusing agents Flavivirus and Kamiti river virus), evidencing the high distribution of these viruses. These results demonstrate that it was feasible to implement the flavivirus detection system in mosquitoes, which could contribute to strengthen the detection, surveillance and control of these viruses, as well as, the knowledge about the ecological importance of insect flaviviruses


Subject(s)
Animals , Real-Time Polymerase Chain Reaction , Flavivirus , Culicidae/virology , Paraguay
7.
Planta Med ; 87(9): 716-723, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33622002

ABSTRACT

Heterophyllaea pustulata is a phototoxic plant from Argentina. Aerial parts extracts, high in photosensitizing anthraquinones, have shown in vitro antiviral activity. The purpose of this study was to study the antiherpetic activity of the main purified anthraquinones, even evaluating their competence as photodynamic sensitizers to photo-stimulate the antiviral effect. In vitro antiviral activity against Herpes Simplex virus type I and the photo-inactivation of viral particle were studied by the Neutral Red uptake test and observation of the cytopathic effect. Rubiadin 1-methyl ether and 5,5'-bisoranjidiol produced a significant effect (≥ 80% inhibition) with minimal damage to host cells (subtoxic concentration). Anthraquinones with poor antiherpetic activity at its maximum noncytotoxic concentration showed an important photo-stimulated effect, such is the case of soranjidiol and 5,5'-bisoranjidiol (28.0 ± 6.3 vs. 81.8 ± 2.1% and 15.5 ± 0.3 vs. 89.8 ± 1.7%, respectively). The study also proved the decrease of viral particles, necessary to reduce infection. Therefore, photosensitizing anthraquinones from natural resources could be proposed to develop new treatments for localized viral lesions with antimicrobial photodynamic therapy.


Subject(s)
Herpes Simplex , Rubiaceae , Anthraquinones/pharmacology , Anti-Bacterial Agents , Antiviral Agents/pharmacology , Argentina , Herpes Simplex/drug therapy , Simplexvirus
8.
Antiviral Res ; 187: 104976, 2021 03.
Article in English | MEDLINE | ID: mdl-33444704

ABSTRACT

The genus Orthobunyavirus are a group of viruses within arbovirus, with a zoonotic cycle, some of which could lead to human infection. A characteristic of these viruses is their lack of antiviral treatment or vaccine for its prevention. The objective of this work was to study the in vitro antiviral activity of nordihydroguaiaretic acid (NDGA), the most important active compound of Larrea divaricata Cav. (Zigophyllaceae), against Fort Sherman virus (FSV) as a model of Orthobunyavirus genus. At the same time, the effect of NDGA as a lipolytic agent on the cell cycle of this viral model was assessed. The method of reducing plaque forming units on LLC-MK2 cells was used to detect the action of NDGA on CbaAr426 and SFCrEq231 isolates of FSV. NDGA did not show virucidal effect, but it had antiviral activity with a similar inhibition in both isolates, which was dose dependent. It was established that the NDGA has a better inhibition 1-h post-internalization (p.i.), showing a different behavior in each isolate, which was dependent upon the time p.i. Since virus multiplication is dependent on host cell lipid metabolism, the antiviral effect of NDGA has been previously related to its ability to disturb the lipid metabolism, probably by interfering with the 5-lipoxigenase (5-LOX) and the sterol regulatory element-binding proteins (SREBP) pathway. We determined by using caffeic acid, a 5-LOX inhibitor, that the inhibition of this enzyme negatively affected the FSV replication; and by means of resveratrol, a SREBP1 inhibitor, it was showed that the negative regulation of this pathway only had action on the SFCrEq231 reduction. In addition, it was proved that the NDGA acts intracellularly, since it showed the ability to incorporate into LLC-MK2 cells. The information provided in this work converts the NDGA into a compound with antiviral activity in vitro against FSV (Orthobunyavirus), which can be subjected to structural modifications in the future to improve the activity.


Subject(s)
Lipid Metabolism/drug effects , Masoprocol/pharmacology , Orthobunyavirus/drug effects , Virus Replication/drug effects , Animals , Antiviral Agents/pharmacology , Arachidonate 5-Lipoxygenase/metabolism , Dose-Response Relationship, Drug , Haplorhini , Microbial Viability , Orthobunyavirus/physiology , Sterol Regulatory Element Binding Protein 1/metabolism , Time Factors
9.
Rev Argent Microbiol ; 53(2): 154-161, 2021.
Article in English | MEDLINE | ID: mdl-33176955

ABSTRACT

St. Louis encephalitis (SLEV) and West Nile (WNV) arboviruses, which circulate in Argentina, are maintained in enzootic transmission cycles involving Culex mosquitoes (vectors) and birds belonging to orders Passeriformes and Columbiformes (amplifier hosts). The objective of this work was to determine the circulation of both viruses among wild birds in a semiarid ecosystem in the Province of La Rioja through a serologic survey. During spring 2013 and fall 2014, a total of 326 wild birds belonging to 41 species were captured in areas close to the cities of La Rioja and Chilecito, in the Province of La Rioja. While exposure to SLEV and WNV was analyzed in birds' serum through neutralizing antibody detection, viral circulation was estimated through apparent seroprevalence of neutralizing antibodies. The exposure of the avian community to viruses was 3.02% for SLEV and 1.89% for WNV, while 1.19% corresponded to coinfections. Our study confirms for the first time the circulation of SLEV and WNV in wild birds in the Province of La Rioja. Moreover, it is the first study to register neutralizing antibodies for flavivirus in the species Leptotila verreauxi (White-tipped Dove) (WNV) and Melanerpes cactorum (White-fronted Woodpecker) (SLEV). These results suggest that in semiarid ecosystems from northwestern Argentina the requirements and conditions for amplification and enzootic maintenance of SLEV and WNV would be present.


Subject(s)
Encephalitis, St. Louis , West Nile virus , Animals , Antibodies, Viral , Argentina/epidemiology , Ecosystem , Encephalitis Virus, St. Louis , Encephalitis, St. Louis/epidemiology , Encephalitis, St. Louis/veterinary , Seroepidemiologic Studies
10.
Acta bioquím. clín. latinoam ; 54(3): 321-331, set. 2020. ilus, graf
Article in Spanish | LILACS | ID: biblio-1130606

ABSTRACT

Los flavivirus transmitidos por mosquitos son una amenaza actual y emergente en todo el mundo. Dentro de este género, el virus Encefalitis San Luis (VESL) causa una forma severa de enfermedad neuroinvasiva donde la respuesta inmune es un componente crucial de la defensa del huésped. En este trabajo se investigó la interacción entre VESL y células de la inmunidad innata, en un modelo de infección in vitro de monocitos humanos (células U937) con cepas de distinta virulencia y condiciones epidemiológicas de aislamiento (CbaAr-4005 y 78V-6507). Se evaluó la capacidad de infectar y replicar del virus, como también el efecto citopático y la cinética de viabilidad de monocitos durante la infección. Los resultados demostraron la susceptibilidad de los monocitos a la infección, replicación y muerte por ambas cepas virales. Sin embargo, se hallaron diferencias significativas entre ellas. La cepa epidémica y de mayor virulencia CbaAr-4005 registró una tasa de infección y replicación superior a la de la cepa endémica y de menor virulencia 78V-6507. Se comprobó también que el VESL indujo la muerte de monocitos humanos, dependiendo del tiempo post-infección (pi) y de la cepa. Así, CbaAr-4005 provocó a partir del día 3 pi el doble de mortalidad celular que 78V-6507. Además, en los monocitos infectados se observaron alteraciones de parámetros morfológicos que podrían relacionarse con el tipo de mecanismo de muerte celular asociado a la infección por VESL.


Mosquitoes borne Flavivirus infections are an actual and emergent worldwide threat to human health. Within this genus, Saint Louis Encephalitis Virus (SLEV) causes a severe neuroinvasive disease where immune response is crucial for host survival. In this study the interaction between SLEV and innate immune cells was evaluated. An in vitro infection model with human monocytes (U937 cells) and strains with variations in virulence and isolation conditions (CbaAr-4005 and 78V-6507) were used. Infection capacity, replication capacity, cytopathic effect and monocyte viability kinetics were measured. The results showed susceptibility to infection and replication to both strains. However, significant differences were found among them. CbaAr-4005, the epidemic and more virulent strain, showed higher infection and replication ratios compared to 78V-6507. SLEV infection that induces cell death of human monocytes was also found in a post-infection time and in a strain dependent manner. Since day 3 post-infection, twice the mortality in CbaAr-4005 infected cells was observed. Furthermore, infected monocytes showed alterations in morphologic parameters that could be related with apoptosis mechanisms associated to SLEV infections.


Os Flavivírus transmitidos por mosquitos são uma ameaça atual e emergente no mundo todo. Nesse gênero, o vírus Encefalite Saint Louis (VESL) causa uma forma grave de doença neuroinvasiva onde a resposta imune é um componente crucial da defesa do hospedeiro. Neste trabalho nos investigamos a interação entre VESL e células de imunidade inata em um modelo de infecção in vitro de monócitos humanos (células U937) com estirpe de diferentes virulências e condições epidemiológicas de isolamento (CbaAr-4005 e 78V-6507). Foi avaliada a capacidade do vírus de infectar e replicar , assim como o efeito citopático e a viabilidade cinética dos monócitos durante a infecção. Os resultados demonstraram a suscetibilidade dos monócitos à infecção, replicação e morte por ambas as estirpes virais. No entanto, foram detectadas diferenças significativas entre eles. A estirpe epidémica e de maior virulenta CbaAr-4005 teve uma maior taxa de infecção e replicação do que a estirpe endémica e menos virulenta 78V-6507. Foi comprovado também que o VESL induziu a morte de monócitos humanos, dependendo do tempo pós-infecção (pi) e da estirpe. Assim, a CbaAr-4005 causou a partir do dia 3 pi o dobro da mortalidade celular o que a 78V- 6507. Além disso, alterações nos parâmetros morfológicos foram observadas nos monócitos infectados que poderiam estar relacionadas ao tipo de mecanismo de morte celular associado à infecção pelo VESL.


Subject(s)
Humans , Male , Female , Virulence , Flavivirus Infections , U937 Cells , Encephalitis , Encephalitis Virus, St. Louis , Encephalitis Viruses/growth & development , Flavivirus , Patient Isolation , Viruses , In Vitro Techniques , Kinetics , Cells , Disease , Incidence , Causality , Mortality , Apoptosis , Culicidae
12.
Arch Virol ; 165(9): 2079-2082, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32627058

ABSTRACT

We evaluated the seroprevalence of Saint Louis encephalitis virus (SLEV) and West Nile virus (WNV) in dogs and cats in Córdoba, Argentina. Monotypic and heterotypic serological patterns were differentiated by means of a neutralization test. The SLEV seroprevalence in dogs was 14.6% (44/302; 100% monotypic). Two out of 94 (2.1%, 100% monotypic) cats were positive for WNV only. Four dogs (1.3%) exhibited neutralizing antibody titers against SLEV and WNV. During the study, three dogs seroconverted to SLEV. Our study demonstrates that pets were useful for detecting viral activity and could be considered as sentinels in the local surveillance of SLEV and WNV.


Subject(s)
Antibodies, Viral/blood , Cat Diseases/blood , Dog Diseases/blood , Encephalitis Virus, St. Louis/immunology , Encephalitis, St. Louis/veterinary , Pets/blood , West Nile Fever/veterinary , West Nile virus/immunology , Animals , Argentina , Cat Diseases/epidemiology , Cat Diseases/virology , Cats , Dog Diseases/epidemiology , Dog Diseases/virology , Dogs , Encephalitis Virus, St. Louis/isolation & purification , Encephalitis, St. Louis/blood , Encephalitis, St. Louis/epidemiology , Encephalitis, St. Louis/virology , Pets/virology , Seroepidemiologic Studies , West Nile Fever/blood , West Nile Fever/epidemiology , West Nile Fever/virology , West Nile virus/isolation & purification
13.
Trans R Soc Trop Med Hyg ; 114(10): 725-729, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32722771

ABSTRACT

BACKGROUND: St. Louis encephalitis virus (SLEV) is endemic and autochthonous on the American continent. Culex pipiens quinquefasciatus is a vector of SLEV; however, Culex interfor and Culex saltanensis have also been found to be naturally infected with SLEV. The aim of this study was to determine the vector competence of C. interfor and C. saltanensis for SLEV from Argentina compared with C. p. quinquefasciatus. METHODS: Female of the Culex species were orally infected by feeding on viraemic chicks that had been inoculated with SLEV. Abdomens, legs and saliva blood-fed mosquitoes were analysed by viral plaque assay. RESULTS: Mosquitoes were susceptible to orally acquired infection, dissemination and transmission of SLEV in the saliva. CONCLUSIONS: Our results demonstrate that C. saltanensis and C. interfor are susceptible to SLEV and competent for its transmission.


Subject(s)
Culex/virology , Encephalitis Virus, St. Louis , Encephalitis, St. Louis/transmission , Mosquito Vectors/virology , Animals , Argentina , Culicidae , Encephalitis, St. Louis/diagnosis , Encephalitis, St. Louis/virology , Female , Humans
14.
Am J Trop Med Hyg ; 101(4): 916-918, 2019 10.
Article in English | MEDLINE | ID: mdl-31482786

ABSTRACT

Madariaga virus (MADV), previously known as South American eastern equine encephalitis virus (SA EEEV; family Togaviridae, genus Alphavirus), is a mosquito-borne virus associated mainly with equine disease. In 2010, the first human outbreak by MADV was reported in Central America, but the mosquito vectors and vertebrate hosts involved in the outbreak were not identified. In Argentina, the first epizootic of MADV was in 1930, and since then, several epizootics by MADV have been reported. However, the potential vectors and hosts involved in the transmission cycle remain unknown. In the present study, MADV was detected in Culex (Culex) spp. mosquitoes and the phylogenetic analysis showed that the MADV fragment amplified grouped with the lineage/subtype III of the SA EEEV complex. Our results provide information about the natural infection with MADV in mosquitoes collected in a wild environment of Argentina and its genetic relatedness.


Subject(s)
Alphavirus/isolation & purification , Culex/virology , Disease Outbreaks , Encephalitis Virus, Eastern Equine/isolation & purification , Encephalomyelitis, Equine/virology , Alphavirus/genetics , Animals , Argentina/epidemiology , Encephalitis Virus, Eastern Equine/genetics , Encephalomyelitis, Equine/epidemiology , Humans , Phylogeny
15.
Infect Genet Evol ; 73: 205-209, 2019 09.
Article in English | MEDLINE | ID: mdl-31048078

ABSTRACT

During 2013, in Argentina, three new isolates of serogroup Bunyamwera virus (genus Orthobunyavirus, family Peribunyaviridae) were recovered from two horses with encephalitis, and from an aborted equine fetus. In the present study, we report the complete genome sequence, genetic characterization, and phylogenetic analysis of three new strains isolated in Argentina to clarifying their relationship within the Bunyamwera serogroup virus and to investigate the evolutionary history of viruses with segmented genomes.


Subject(s)
Bunyaviridae Infections/veterinary , Genome, Viral , Genomics , Livestock/virology , Orthobunyavirus/genetics , Animals , Bunyaviridae Infections/virology , Phylogeny
16.
Front Microbiol ; 9: 1181, 2018.
Article in English | MEDLINE | ID: mdl-29930541

ABSTRACT

Saint Louis encephalitis virus (SLEV) is a neglected flavivirus that causes severe neurological disorders. The epidemic strain of SLEV, CbaAr-4005, isolated during an outbreak in Córdoba city (Argentina), causes meningitis and encephalitis associated with neurological symptoms in a murine experimental model. Here, we identified the affected brain areas and the damage triggered by this neurotropic arbovirus. We performed a detailed analysis of brain neurodegeneration associated with CbaAr-4005 SLEV infection in mice. The motor cortex, corpus striatum and cerebellum were the most affected structures. Neurodegeneration was also found in the olfactory bulb, thalamus, hypothalamus, hippocampus, and hindbrain. SLEV infection triggered brain cell apoptosis as well as somatodendritic and terminal degeneration. In addition, we observed massive excitotoxic-like degeneration in many cortical structures. Apoptosis was also detected in the neuroblastoma cell line N2a cultured with SLEV. The results evidenced that SLEV CbaAr-4005 infection induced severe degenerative alterations within the central nervous system of infected mice, providing new information about the targets of this flavivirus infection.

17.
Am J Trop Med Hyg ; 99(1): 216-221, 2018 07.
Article in English | MEDLINE | ID: mdl-29761767

ABSTRACT

St.Louis encephalitis virus (SLEV) is an emerging human pathogen flavivirus in Argentina. Recently, it has reemerged in the United States. We evaluated the role as amplifying host of six resident bird species and analyzed their capacity as host during the 2005 encephalitis outbreak of SLEV in Córdoba. Eared Dove, Picui Ground Dove, and House Sparrow were the three species with highest host competence index. At a city level, Eared Dove and Picui Ground Dove were the most important amplifying hosts during the 2005 SLEV human outbreak in Córdoba city. This finding highlighted important differences in the SLEV ecology between Argentina and the United States. Characterizing and evaluating the SLEV hosts contribute to our knowledge about its ecology and could help us to understand the causes that promote its emergence as a human pathogen in South America.


Subject(s)
Columbidae/virology , Disease Outbreaks , Encephalitis Virus, St. Louis/isolation & purification , Encephalitis, St. Louis/epidemiology , Sparrows/virology , Animals , Argentina/epidemiology , Disease Reservoirs/virology , Encephalitis, St. Louis/transmission , Encephalitis, St. Louis/virology , Humans , Viral Load
18.
Vector Borne Zoonotic Dis ; 18(5): 266-272, 2018 05.
Article in English | MEDLINE | ID: mdl-29652644

ABSTRACT

INTRODUCTION: Alphaviruses can produce febrile illness and encephalitis in dead-end hosts such as horses and humans. Within this genus, the Venezuelan Equine Encephalitis virus (VEEV) complex includes pathogenic epizootic subtypes and enzootic subtypes that are not pathogenic in horses (except subtype IE, Mexican strains), although they can cause febrile symptoms in humans. The Rio Negro virus (RNV-VEEV subtype VI) circulates in Argentina, where it was associated with undifferentiated febrile illness. Mayaro (MAYV) and Una (UNAV) viruses belong to a different group, the Semliki Forest virus complex, with confirmed circulation. OBJECTIVE: The present study aimed to determine RNV, MAYV, and UNAV seroprevalences by plaque reduction neutralization test in 652 samples of Paraguayan individuals mainly from the Central Department, between years 2012 and 2013. METHODS: Samples with antibodies titer >1:20 against RNV were also tested for Mosso das Pedras-subtype IF, subtype IAB, and Pixuna (PIXV)-subtype IV viruses that belongs to VEEV antigenic complex. RESULTS: The overall seroprevalence of RNV was 3.83%, and for UNAV it was 0.46%, and no neutralizing antibodies were detected against MAYV in the studied population. Two of the twenty-seven heterotypic samples were positive for PIXV. The 50.1% of neutralizing antibody titers against RNV were high (equal to or greater than 1/640), suggesting recent infections. The effect of age on the prevalence of RNV was negligible. CONCLUSIONS: These results bring new information about neglected alphaviruses in South America, and these data will serve as the basis for future studies of seroprevalence of other VEEV, and studies to search potential hosts and vectors of these viruses in the region.


Subject(s)
Alphavirus Infections/epidemiology , Alphavirus/immunology , Antibodies, Viral/blood , Adolescent , Adult , Aged , Aged, 80 and over , Alphavirus/genetics , Alphavirus/isolation & purification , Alphavirus Infections/virology , Child , Child, Preschool , Encephalitis Virus, Venezuelan Equine/genetics , Encephalitis Virus, Venezuelan Equine/immunology , Encephalitis Virus, Venezuelan Equine/isolation & purification , Female , Humans , Infant , Male , Middle Aged , Paraguay/epidemiology , Seroepidemiologic Studies , Young Adult
19.
Am J Trop Med Hyg ; 98(6): 1811-1818, 2018 06.
Article in English | MEDLINE | ID: mdl-29633690

ABSTRACT

Alphaviruses (Togaviridae) are arboviruses frequently associated with emerging infectious diseases. In this study, we aimed to investigate the presence of alphaviruses in Uruguay by detecting the viral genome in mosquitoes and neutralizing antibodies in equines. A total of 3,575 mosquitoes were analyzed for alphavirus genome detection. Serologic studies were performed on 425 horse sera by plaque reduction neutralization test (PRNT80) against Venezuelan equine encephalitis virus (VEEV) subtype IAB, Pixuna virus (PIXV), Rio Negro virus (RNV), western equine encephalitis virus (WEEV), and Madariaga virus (MADV). Mosquitoes belonging to six genera were captured and 82.9% were identified as Culex pipiens. Two Cx. pipiens pools collected in Fray Bentos and Las Toscas localities were alphavirus positive, and phylogenetic analyses showed that the sequences grouped into two different clusters: the lineage I of eastern equine encephalitis virus and RNV (VEEV complex), respectively. Plaque reduction neutralization test assays showed antibodies against strains of the VEEV complex, MADV, and WEEV. Rio Negro virus was the most geographically widespread virus, showing higher seroprevalences (up to 20%). Seroprevalences against VEEV IAB ranged between 4.6% and 13%; antibodies against PIXV, WEEV, and MADV were less frequent (3-4%). In conclusion, RNV exhibited the highest seroprevalence in horses, a wide geographical distribution, and viral genome was detected in Cx. pipiens mosquitoes. Madariaga virus had a low seroprevalence in equines, but an epizootic lineage typical of North America was detected in Cx. pipiens mosquitoes. Taken together, our results show that alphaviruses are present in Uruguay with variable occurrence and geographical distribution being a potential threat for human and equine health.


Subject(s)
Alphavirus Infections/epidemiology , Alphavirus/immunology , Antibodies, Viral/blood , Culicidae/virology , Genome, Viral/genetics , Horse Diseases/epidemiology , Alphavirus/genetics , Alphavirus/isolation & purification , Alphavirus Infections/virology , Animals , Antibodies, Neutralizing/blood , Female , Horse Diseases/virology , Horses , Humans , Male , Phylogeny , Seroepidemiologic Studies , Uruguay/epidemiology
20.
J Med Entomol ; 54(3): 509-532, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28399216

ABSTRACT

Varios arbovirus han emergido y/o reemergido en el Nuevo Mundo en las últimas décadas. Los virus Zika y chikungunya, anteriormente restringidos a África y quizás Asia, invadieron el continente, causando gran preocupación; además siguen ocurriendo brotes causados por el virus dengue en casi todos los países, con millones de casos por año. El virus West Nile invadió rápidamente América del Norte, y ya se han encontrado casos en América Central y del Sur. Otros arbovirus, como Mayaro y el virus de la encefalitis equina del este han aumentado su actividad y se han encontrado en nuevas regiones. Se han documentado cambios en la patogenicidad de algunos virus que conducen a enfermedades inesperadas. Una fauna diversa de mosquitos, cambios climáticos y en la vegetación, aumento de los viajes, y urbanizaciones no planificadas que generan condiciones adecuadas para la proliferación de Aedes aegypti (L.), Culex quinquefasciatus Say y otros mosquitos vectores, se han combinado para influir fuertemente en los cambios en la distribución y la incidencia de varios arbovirus. Se enfatiza la necesidad de realizar estudios exhaustivos de la fauna de mosquitos y modificaciones de las condiciones ambientales, sobre todo en las zonas urbanas fuertemente influenciadas por factores sociales, políticos y económicos.


Subject(s)
Arbovirus Infections , Arboviruses/physiology , Communicable Diseases, Emerging , Culicidae/virology , Animals , Arbovirus Infections/epidemiology , Arbovirus Infections/transmission , Arbovirus Infections/virology , Caribbean Region , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/transmission , Communicable Diseases, Emerging/virology , Culicidae/physiology , South America
SELECTION OF CITATIONS
SEARCH DETAIL
...