Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 62(44): 18040-18048, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37871177

ABSTRACT

Below 42 K, the homometallic Co3O2BO3 ludwigite forms magnetic planes separated by nonmagnetic low-spin Co3+ ions. The substitution of Co3+ by other nonmagnetic ions enhances the magnetic interactions, raising the magnetic ordering temperature. However, depending on the nonmagnetic dopant ion, the remaining Co3+ ions could adopt a high-spin state, creating magnetic frustration and lowering the magnetic transition temperature. Doping Co3O2BO3 with nonmagnetic In3+ ions favors the appearance of both high-spin Co2+ and Co3+. The In3+ ions preferentially occupy sites 4 and are randomly distributed in each site. The two-dimensional magnetic character of the parent compound, Co3O2BO3, is preserved, and the magnetic transition temperature increases to 47.8 K. Measurements of magnetization, which show metamagnetic transitions at low temperatures, and specific heat are consistent with ferrimagnetic ordering in this system. Thus, using these results and those reported in the literature, the effects caused by doping of Co3O2BO3 with different nonmagnetic +3 ions are discussed in terms of the presence of high-spin Co2+ and Co3+ in the compounds.

2.
Sci Rep ; 13(1): 17965, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37863891

ABSTRACT

We theoretically propose penta-silicene nanoribbons (p-SiNRs) with induced p-wave superconductivity as a platform for the emergence of spin-polarized Majorana zero-modes (MZMs). The model explicitly considers the key ingredients of well-known Majorana hybrid nanowire setups: Rashba spin-orbit coupling, magnetic field perpendicular to the nanoribbon plane, and first nearest neighbor hopping with p-wave superconducting pairing. The energy spectrum of the system, as a function of chemical potential, reveals the existence of MZMs with a well-defined spin orientation localized at the opposite ends of both the top and bottom chains of the p-SiNR, associated with well-localized and nonoverlapping wave function profiles. Well-established experimental techniques enable the fabrication of highly ordered p-SiNRs, complemented by a thin lead film on top, responsible for inducing p-wave superconductivity through proximity effect. Moreover, the emergence of MZMs with explicit opposite spin orientations for some set of model parameters opens a new avenue for exploring quantum computing operations, which accounts for both MZMs and spin properties, as well as for new MZMs probe devices based on spin-polarized electronic transport mechanisms.

3.
Sci Rep ; 13(1): 1508, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36707603

ABSTRACT

Topological one-dimensional superconductors can sustain zero energy modes protected by different kinds of symmetries in their extremities. Observing these excitations in the form of Majorana fermions is one of the most intensive quests in condensed matter physics. We are interested in another class of one-dimensional topological systems in this work, namely topological insulators. Which present symmetry-protected end modes with robust properties and do not require the low temperatures necessary for topological superconductivity. We consider a device in the form of a single electron transistor coupled to the simplest kind of topological insulators, namely chains of atoms with hybridized sp orbitals. We study the thermoelectric properties of the device in the trivial, non-trivial topological phases and at the quantum topological transition of the chains. We show that the device's electrical conductance and the Wiedemann-Franz ratio at the topological transition have universal values at very low temperatures. The conductance and thermopower of the device with diatomic sp-chains, at their topological transition, give direct evidence of fractional charges in the system. The former has an anomalous low-temperature behavior, attaining a universal value that is a consequence of the double degeneracy of the system due to the presence of zero energy modes. On the other hand, the system can be tuned to exhibit high values of the thermoelectric figure of merit and the power factor at high temperatures.

4.
Sci Rep ; 11(1): 22524, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34795344

ABSTRACT

A proposal to study topological models beyond the standard topological classification and that exhibit breakdown of Lorentz invariance is presented. The focus of the investigation relies on their anisotropic quantum critical behavior. We study anisotropic effects on three-dimensional (3D) topological models, computing their anisotropic correlation length critical exponent [Formula: see text] obtained from numerical calculations of the penetration length of the zero-energy surface states as a function of the distance to the topological quantum critical point. A generalized Weyl semimetal model with broken time-reversal symmetry is introduced and studied using a modified Dirac equation. An approach to characterize topological surface states in topological insulators when applied to Fermi arcs allows to capture the anisotropic critical exponent [Formula: see text]. We also consider the Hopf insulator model, for which the study of the topological surface states yields unusual values for [Formula: see text] and for the dynamic critical exponent z. From an analysis of the energy dispersions, we propose a scaling relation [Formula: see text] and [Formula: see text] for [Formula: see text] and z that only depends on the Hopf insulator Hamiltonian parameters p and q and the axis direction [Formula: see text]. An anisotropic quantum hyperscaling relation is also obtained.

5.
J Phys Condens Matter ; 32(41): 415601, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32512551

ABSTRACT

The study of the competition or coexistence of different ground states in many-body systems is an exciting and actual topic of research, both experimentally and theoretically. Quantum fluctuations of a given phase can suppress or enhance another phase depending on the nature of the coupling between the order parameters, their dynamics and the dimensionality of the system. The zero temperature phase diagrams of systems with competing scalar order parameters with quartic and bilinear coupling terms have been previously studied for the cases of a zero temperature bicritical point and of coexisting orders. In this work, we apply the Matsubara summation technique from finite temperature quantum field theory to introduce the effects of thermal fluctuations on the effective potential of these systems. This is essential to make contact with experiments. We consider two and three-dimensional materials characterized by a Lorentz invariant quantum critical theory, i.e., with dynamic critical exponent z = 1, such that time and space scale in the same way. We obtain that in both cases, thermal fluctuations lead to weak first-order temperature phase transitions, at which coexisting phases arising from quantum corrections become unstable. We show that above this critical temperature (T c), the system presents scaling behavior consistent with that approaching a quantum critical point. Below the transition the specific heat has a thermally activated contribution with a gap related to the size of the domains of the ordered phases. We obtain that T c decreases as a function of the distance to the zero temperature classical bicritical point (ZTCBP) in the coexistence region, implying that in our approach, the system attains the highest T c above the fine tuned value of this ZTCBP.

6.
Phys Rev Lett ; 120(12): 125901, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29694090

ABSTRACT

We present a study of thermal conductivity, κ, in undoped and doped strontium titanate in a wide temperature range (2-400 K) and detecting different regimes of heat flow. In undoped SrTiO_{3}, κ evolves faster than cubic with temperature below its peak and in a narrow temperature window. Such behavior, previously observed in a handful of solids, has been attributed to a Poiseuille flow of phonons, expected to arise when momentum-conserving scattering events outweigh momentum-degrading ones. The effect disappears in the presence of dopants. In SrTi_{1-x}Nb_{x}O_{3}, a significant reduction in lattice thermal conductivity starts below the temperature at which the average inter-dopant distance and the thermal wavelength of acoustic phonons become comparable. In the high-temperature regime, thermal diffusivity becomes proportional to the inverse of temperature, with a prefactor set by sound velocity and Planckian time (τ_{p}=(ℏ/k_{B}T)).

7.
J Phys Condens Matter ; 30(22): 225402, 2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29697408

ABSTRACT

We use the effective potential method of quantum field theory to obtain the quantum corrections to the zero temperature phase diagram of systems with competing order parameters. We are particularly interested in two different scenarios: regions of the phase diagram where there is a bicritical point, at which both phases vanish continuously, and the case where both phases coexist homogeneously. We consider different types of couplings between the order parameters, including a bilinear one. This kind of coupling breaks time-reversal symmetry and it is only allowed if both order parameters transform according to the same irreducible representation. This occurs in many physical systems of actual interest like competing spin density waves, different types of orbital antiferromagnetism, elastic instabilities of crystal lattices, vortices in a multigap SC and also applies to describe the unusual magnetism of the heavy fermion compound URu2Si2. Our results show that quantum corrections have an important effect on the phase diagram of systems with competing orders.

8.
J Phys Condens Matter ; 24(35): 356001, 2012 Sep 05.
Article in English | MEDLINE | ID: mdl-22885672

ABSTRACT

In this paper we investigate adiabatic charge and spin pumping through interacting quantum dots using non-equilibrium Green's function techniques and the equation-of-motion method. We treat the electronic correlations inside the dot using a Hartree-Fock approximation and succeed in obtaining closed analytic expressions for the Keldysh Green's functions. These allow us to compute charge and spin currents through the quantum dot. Depending on the parameters of the quantum dot and its coupling to the reservoirs, we show that it can be found in two different regimes: the magnetic regime and the non-magnetic regime. In the magnetic regime we find a non-vanishing spin current in addition to the charge current present in both cases.

9.
J Phys Condens Matter ; 22(7): 075701, 2010 Feb 24.
Article in English | MEDLINE | ID: mdl-21386394

ABSTRACT

The study of superconductivity in correlated systems is an exciting area of condensed matter physics. In this paper we consider superconducting ground states in systems described by two-band models with different effective masses. These two bands are coupled through an effective hybridization that can be directly tuned by pressure. We consider the cases of s-wave superconductivity associated with the electrons in a narrow band and also with inter-band pairing. To study the system in the strong coupling regime we introduce the s-wave scattering length a(s), and obtain the superconducting order parameters and the chemical potential as functions of the interaction strength 1/k(F)a(s) along the BCS-BEC crossover at T = 0. Finally, we discuss the phase diagram of this model as a function of external pressure and how our results can be applied for two-band systems as Fe pnictides or heavy fermions. The main result of this study is the occurrence of a superconducting quantum critical point (SQCP) in this two-band model.


Subject(s)
Electric Conductivity , Electrons , Models, Statistical , Models, Theoretical
10.
J Phys Condens Matter ; 22(48): 485701, 2010 Dec 08.
Article in English | MEDLINE | ID: mdl-21406754

ABSTRACT

In fermionic systems with different types of quasi-particles, attractive interactions can give rise to exotic superconducting states, such as pair density wave (PDW) superconductivity and breached pairing. In recent years the search for these new types of ground states in cold atoms and in metallic systems has been intense. In the case of metals the different quasi-particles may be the up and down spin bands in an external magnetic field or bands arising from distinct atomic orbitals that coexist at a common Fermi surface. These systems present a complex phase diagram as a function of the difference between the Fermi wavevectors of the different bands. This can be controlled by external means, varying the density in the two-component cold atom system or, in a metal, by applying an external magnetic field or pressure. Here we study the zero temperature instability of the normal system as the Fermi wavevector mismatch of the quasi-particles (bands) is reduced and find a second order quantum phase transition to a PDW superconducting state. From the nature of the quantum critical fluctuations close to the superconducting quantum critical point (SQCP), we obtain its dynamic critical exponent. It turns out to be z = 2 and this allows us to fully characterize the SQCP for dimensions d ≥ 2.

11.
Phys Rev Lett ; 89(11): 117202, 2002 Sep 09.
Article in English | MEDLINE | ID: mdl-12225164

ABSTRACT

We present a new perturbative real space renormalization group (RG) to study random quantum spin chains and other one-dimensional disordered quantum systems. The method overcomes problems of the original approach which fails for quantum random chains with spins larger than S=1/2. Since it works even for weak disorder, we are able to obtain the zero temperature phase diagram of the random antiferromagnetic Heisenberg spin-1 chain as a function of disorder. We find a random singlet phase for strong disorder. As the disorder decreases, the system shows a crossover from a Griffiths to a disordered Haldane phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...